Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Shigella flexneri regulation of ARF6 activation during bacterial entry via an IpgD-mediated positive feedback loop.

  • Anna Cristina Garza-Mayers‎ et al.
  • mBio‎
  • 2015‎

Entry into cells is critical for virulence of the human bacterial pathogens Shigella spp. Shigella spp. induce membrane ruffle formation and macropinocytic uptake, but the events instigating this process are incompletely understood. The host small GTPase ADP-ribosylation factor 6 (ARF6) functions in membrane trafficking at the plasma membrane and activates membrane ruffle formation. We demonstrate that ARF6 is required for efficient Shigella flexneri entry, is activated by S. flexneri dependent on the phosphatase activity of the type III secreted effector IpgD, and depends on cytohesin guanine nucleotide exchange factors (GEFs) for recruitment to entry sites. The cytohesin GEF ARF nucleotide binding site opener (ARNO) is recruited to these sites, also dependent on IpgD phosphatase activity. ARNO recruitment is independent of ARF6, indicating that, in addition to the described recruitment of ARNO by ARF6, ARNO is recruited upstream of ARF6. Our data provide evidence that ARF6, IpgD, phosphoinositide species, and ARNO constitute a previously undescribed positive feedback loop that amplifies ARF6 activation at bacterial entry sites, thereby promoting efficient S. flexneri uptake.


A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment.

  • Kenneth Kh Ng‎ et al.
  • eLife‎
  • 2018‎

Cell fate decisions occur through the switch-like, irreversible activation of fate-specifying genes. These activation events are often assumed to be tightly coupled to changes in upstream transcription factors, but could also be constrained by cis-epigenetic mechanisms at individual gene loci. Here, we studied the activation of Bcl11b, which controls T-cell fate commitment. To disentangle cis and trans effects, we generated mice where two Bcl11b copies are tagged with distinguishable fluorescent proteins. Quantitative live microscopy of progenitors from these mice revealed that Bcl11b turned on after a stochastic delay averaging multiple days, which varied not only between cells but also between Bcl11b alleles within the same cell. Genetic perturbations, together with mathematical modeling, showed that a distal enhancer controls the rate of epigenetic activation, while a parallel Notch-dependent trans-acting step stimulates expression from activated loci. These results show that developmental fate transitions can be controlled by stochastic cis-acting events on individual loci.


Temporal and Spatial Heterogeneity of Host Response to SARS-CoV-2 Pulmonary Infection.

  • Niyati Desai‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2020‎

The relationship of SARS-CoV-2 lung infection and severity of pulmonary disease is not fully understood. We analyzed autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter- and intra- patient heterogeneity of pulmonary virus infection. There was a spectrum of high and low virus cases that was associated with duration of disease and activation of interferon pathway genes. Using a digital spatial profiling platform, the virus corresponded to distinct spatial expression of interferon response genes and immune checkpoint genes demonstrating the intra-pulmonary heterogeneity of SARS-CoV-2 infection.


Plasma-derived extracellular vesicle analysis and deconvolution enable prediction and tracking of melanoma checkpoint blockade outcome.

  • Alvin Shi‎ et al.
  • Science advances‎
  • 2020‎

Immune checkpoint inhibitors (ICIs) show promise, but most patients do not respond. We identify and validate biomarkers from extracellular vesicles (EVs), allowing non-invasive monitoring of tumor- intrinsic and host immune status, as well as a prediction of ICI response. We undertook transcriptomic profiling of plasma-derived EVs and tumors from 50 patients with metastatic melanoma receiving ICI, and validated with an independent EV-only cohort of 30 patients. Plasma-derived EV and tumor transcriptomes correlate. EV profiles reveal drivers of ICI resistance and melanoma progression, exhibit differentially expressed genes/pathways, and correlate with clinical response to ICI. We created a Bayesian probabilistic deconvolution model to estimate contributions from tumor and non-tumor sources, enabling interpretation of differentially expressed genes/pathways. EV RNA-seq mutations also segregated ICI response. EVs serve as a non-invasive biomarker to jointly probe tumor-intrinsic and immune changes to ICI, function as predictive markers of ICI responsiveness, and monitor tumor persistence and immune activation.


Duration of viable virus shedding in SARS-CoV-2 omicron variant infection.

  • Julie Boucau‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2022‎

Clinical features of SARS-CoV-2 Omicron variant infection, including incubation period and transmission rates, distinguish this variant from preceding variants. However, whether the duration of shedding of viable virus differs between omicron and previous variants is not well understood. To characterize how variant and vaccination status impact shedding of viable virus, we serially sampled symptomatic outpatients newly diagnosed with COVID-19. Anterior nasal swabs were tested for viral load, sequencing, and viral culture. Time to PCR conversion was similar between individuals infected with the Delta and the Omicron variant. Time to culture conversion was also similar, with a median time to culture conversion of 6 days (interquartile range 4-8 days) in both groups. There were also no differences in time to PCR or culture conversion by vaccination status.


SARS-CoV-2 infects blood monocytes to activate NLRP3 and AIM2 inflammasomes, pyroptosis and cytokine release.

  • Caroline Junqueira‎ et al.
  • Research square‎
  • 2021‎

SARS-CoV-2 causes acute respiratory distress that can progress to multiorgan failure and death in a minority of patients. Although severe COVID-19 disease is linked to exuberant inflammation, how SARS-CoV-2 triggers inflammation is not understood. Monocytes and macrophages are sentinel immune cells in the blood and tissue, respectively, that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D (GSDMD) pores, leading to inflammatory death (pyroptosis) and processing and release of IL-1 family cytokines, potent inflammatory mediators. Here we show that expression quantitative trait loci (eQTLs) linked to higher GSDMD expression increase the risk of severe COVID-19 disease (odds ratio, 1.3, p<0.005). We find that about 10% of blood monocytes in COVID-19 patients are infected with SARS-CoV-2. Monocyte infection depends on viral antibody opsonization and uptake of opsonized virus by the Fc receptor CD16. After uptake, SARS-CoV-2 begins to replicate in monocytes, as evidenced by detection of double-stranded RNA and subgenomic RNA and expression of a fluorescent reporter gene. However, infection is aborted, and infectious virus is not detected in infected monocyte supernatants or patient plasma. Instead, infected cells undergo inflammatory cell death (pyroptosis) mediated by activation of the NLRP3 and AIM2 inflammasomes, caspase-1 and GSDMD. Moreover, tissue-resident macrophages, but not infected epithelial cells, from COVID-19 lung autopsy specimens showed evidence of inflammasome activation. These findings taken together suggest that antibody-mediated SARS-CoV-2 infection of monocytes/macrophages triggers inflammatory cell death that aborts production of infectious virus but causes systemic inflammation that contributes to severe COVID-19 disease pathogenesis.


The Kinetics of SARS-CoV-2 Antibody Development Is Associated with Clearance of RNAemia.

  • Chuangqi Wang‎ et al.
  • mBio‎
  • 2022‎

Persistent SARS-CoV-2 replication and systemic dissemination are linked to increased COVID-19 disease severity and mortality. However, the precise immune profiles that track with enhanced viral clearance, particularly from systemic RNAemia, remain incompletely defined. To define whether antibody characteristics, specificities, or functions that emerge during natural infection are linked to accelerated containment of viral replication, we examined the relationship of SARS-CoV-2-specific humoral immune evolution in the setting of SARS-CoV-2 plasma RNAemia, which is tightly associated with disease severity and death. On presentation to the emergency department, S-specific IgG3, IgA1, and Fc-γ-receptor (Fcγ R) binding antibodies were all inversely associated with higher baseline plasma RNAemia. Importantly, the rapid development of spike (S) and its subunit (S1/S2/receptor binding domain)-specific IgG, especially FcγR binding activity, were associated with clearance of RNAemia. These results point to a potentially critical and direct role for SARS-CoV-2-specific humoral immune clearance on viral dissemination, persistence, and disease outcome, providing novel insights for the development of more effective therapeutics to resolve COVID-19. IMPORTANCE We showed that persistent SARS-CoV-2 RNAemia is an independent predictor of severe COVID-19. We observed that SARS-CoV-2-targeted antibody maturation, specifically Fc-effector functions rather than neutralization, was strongly linked with the ability to rapidly clear viremia. This highlights the critical role of key humoral features in preventing viral dissemination or accelerating viremia clearance and provides insights for the design of next-generation monoclonal therapeutics. The main key points will be that (i) persistent SARS-CoV-2 plasma RNAemia independently predicts severe COVID-19 and (ii) specific humoral immune functions play a critical role in halting viral dissemination and controlling COVID-19 disease progression.


Activation of Shigella flexneri type 3 secretion requires a host-induced conformational change to the translocon pore.

  • Brian C Russo‎ et al.
  • PLoS pathogens‎
  • 2019‎

Type 3 secretion systems (T3SSs) are conserved bacterial nanomachines that inject virulence proteins (effectors) into eukaryotic cells during infection. Due to their ability to inject heterologous proteins into human cells, these systems are being developed as therapeutic delivery devices. The T3SS assembles a translocon pore in the plasma membrane and then docks onto the pore. Docking activates effector secretion through the pore and into the host cytosol. Here, using Shigella flexneri, a model pathogen for the study of type 3 secretion, we determined the molecular mechanisms by which host intermediate filaments trigger docking and enable effector secretion. We show that the interaction of intermediate filaments with the translocon pore protein IpaC changed the pore's conformation in a manner that was required for docking. Intermediate filaments repositioned residues of the Shigella pore protein IpaC that are located on the surface of the pore and in the pore channel. Restricting these conformational changes blocked docking in an intermediate filament-dependent manner. These data demonstrate that a host-induced conformational change to the pore enables T3SS docking and effector secretion, providing new mechanistic insight into the regulation of type 3 secretion.


The relationship between nutritional status at the time of stroke on adverse outcomes: a systematic review and meta-analysis of prospective cohort studies.

  • Arnav Mehta‎ et al.
  • Nutrition reviews‎
  • 2022‎

The impact of existing malnutrition on stroke outcomes is poorly recognised and treated. Evidence was systematically reviewed and quantified by meta-analysis.


The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium.

  • Alan Huett‎ et al.
  • Cell host & microbe‎
  • 2012‎

Several species of pathogenic bacteria replicate within an intracellular vacuolar niche. Bacteria that escape into the cytosol are captured by the autophagic pathway and targeted for lysosomal degradation, representing a defense against bacterial exploitation of the host cytosol. Autophagic capture of Salmonella Typhimurium occurs predominantly via generation of a polyubiquitin signal around cytosolic bacteria, binding of adaptor proteins, and recruitment of autophagic machinery. However, the components mediating bacterial target selection and ubiquitination remain obscure. We identify LRSAM1 as the E3 ligase responsible for anti-Salmonella autophagy-associated ubiquitination. LRSAM1 localizes to several intracellular bacterial pathogens and generates the bacteria-associated ubiquitin signal; these functions require LRSAM1's leucine-rich repeat and RING domains, respectively. Using cells from LRSAM1-deficient individuals, we confirm that LRSAM1 is required for ubiquitination associated with intracellular bacteria but dispensable for ubiquitination of aggregated proteins. LRSAM1 is therefore a bacterial recognition protein and ubiquitin ligase that defends the cytoplasm from invasive pathogens.


Polar positional information in Escherichia coli spherical cells.

  • Nathalie Pradel‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

Shigella surface protein IcsA and its cytoplasmic derivatives are localized to the old pole of rod-shaped cells when expressed in Escherichia coli. In spherical mreB cells, IcsA is targeted to ectopic sites and close to one extremity of actin-like MamK filament. To gain insight into the properties of the sites containing polar material, we studied the IcsA localization in spherical cells. GFP was exported into the periplasm via the Tat pathway and used as a periplasmic space marker. GFP displayed zonal fluorescence in both mreB and rodA-pbpA spherical E. coli cells, indicating an uneven periplasmic space. Deconvolution images revealed that the cytoplasmic IcsA fused to mCherry was localized outside or at the edge of the GFP zones. These observations strongly suggest that polar material is restricted to the positions where the periplasm possesses particular structural or biochemical properties.


Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection.

  • Brian C Russo‎ et al.
  • mBio‎
  • 2019‎

Many Gram-negative bacterial pathogens require a type 3 secretion system (T3SS) to deliver effector proteins into eukaryotic cells. Contact of the tip complex of the T3SS with a target eukaryotic cell initiates secretion of the two bacterial proteins that assemble into the translocon pore in the plasma membrane. The translocon pore functions to regulate effector protein secretion and is the conduit for effector protein translocation across the plasma membrane. To generate insights into how the translocon pore regulates effector protein secretion, we defined the topology of the Shigella translocon pore protein IpaC in the plasma membrane following its native delivery by the T3SS. Using single cysteine substitution mutagenesis and site-directed labeling with a membrane-impermeant chemical probe, we mapped residues accessible from the extracellular surface of the cell. Our data support a model in which the N terminus of IpaC is extracellular and the C terminus of IpaC is intracellular. These findings resolve previously conflicting data on IpaC topology that were based on nonnative delivery of IpaC to membranes. Salmonella enterica serovar Typhimurium also requires the T3SS for effector protein delivery into eukaryotic cells. Although the sequence of IpaC is closely related to the Salmonella translocon pore protein SipC, the two proteins have unique functional attributes during infection. We showed a similar overall topology for SipC and IpaC and identified subtle topological differences between their transmembrane α-helixes and C-terminal regions. Together, our data suggest that topological differences among distinct translocon pore proteins may dictate organism-specific functional differences of the T3SSs during infection.IMPORTANCE The type 3 secretion system (T3SS) is a nanomachine required for virulence of many bacterial pathogens that infect humans. The system delivers bacterial virulence proteins into the cytosol of human cells, where the virulence proteins promote bacterial infection. The T3SS forms a translocon pore in the membranes of target cells. This pore is the portal through which bacterial virulence proteins are delivered by the T3SS into the eukaryotic cytosol. The pore also regulates secretion of these virulence proteins. Our work defines the topology of translocon pore proteins in their native context during infection, resolves previously conflicting reports about the topology of the Shigella translocon pore protein IpaC, and provides new insights into how interactions of the pore with the T3SS likely produce signals that activate secretion of virulence proteins.


Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions.

  • Miriam Kutsch‎ et al.
  • The EMBO journal‎
  • 2020‎

In the outer membrane of gram-negative bacteria, O-antigen segments of lipopolysaccharide (LPS) form a chemomechanical barrier, whereas lipid A moieties anchor LPS molecules. Upon infection, human guanylate binding protein-1 (hGBP1) colocalizes with intracellular gram-negative bacterial pathogens, facilitates bacterial killing, promotes activation of the lipid A sensor caspase-4, and blocks actin-driven dissemination of the enteric pathogen Shigella. The underlying molecular mechanism for hGBP1's diverse antimicrobial functions is unknown. Here, we demonstrate that hGBP1 binds directly to LPS and induces "detergent-like" LPS clustering through protein polymerization. Binding of polymerizing hGBP1 to the bacterial surface disrupts the O-antigen barrier, thereby unmasking lipid A, eliciting caspase-4 recruitment, enhancing antibacterial activity of polymyxin B, and blocking the function of the Shigella outer membrane actin motility factor IcsA. These findings characterize hGBP1 as an LPS-binding surfactant that destabilizes the rigidity of the outer membrane to exert pleiotropic effects on the functionality of gram-negative bacterial cell envelopes.


Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial.

  • Aparna R Parikh‎ et al.
  • Nature cancer‎
  • 2021‎

Overcoming intrinsic resistance to immune checkpoint blockade for microsatellite stable (MSS) colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) remains challenging. We conducted a single-arm, non-randomized, phase II trial (NCT03104439) combining radiation, ipilimumab and nivolumab to treat patients with metastatic MSS CRC (n = 40) and PDAC (n = 25) with an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. The primary endpoint was disease control rate (DCR) by intention to treat. DCRs were 25% for CRC (ten of 40; 95% confidence interval (CI), 13-41%) and 20% for PDAC (five of 25; 95% CI, 7-41%). In the per-protocol analysis, defined as receipt of radiation, DCR was 37% (ten of 27; 95% CI, 19-58%) in CRC and 29% (five of 17; 95% CI, 10-56%) in PDAC. Pretreatment biopsies revealed low tumor mutational burden for all samples but higher numbers of natural killer (NK) cells and expression of the HERVK repeat RNA in patients with disease control. This study provides proof of concept of combining radiation with immune checkpoint blockade in immunotherapy-resistant cancers.


The Shigella Spp. Type III Effector Protein OspB Is a Cysteine Protease.

  • Thomas E Wood‎ et al.
  • mBio‎
  • 2022‎

The type III secretion system is required for virulence of many pathogenic bacteria. Bacterial effector proteins delivered into target host cells by this system modulate host signaling pathways and processes in a manner that promotes infection. Here, we define the activity of the effector protein OspB of the human pathogen Shigella spp., the etiological agent of shigellosis and bacillary dysentery. Using the yeast Saccharomyces cerevisiae as a model organism, we show that OspB sensitizes cells to inhibition of TORC1, the central regulator of growth and metabolism. In silico analyses reveal that OspB bears structural homology to bacterial cysteine proteases that target mammalian cell processes, and we define a conserved cysteine-histidine catalytic dyad required for OspB function. Using yeast genetic screens, we identify a crucial role for the arginine N-degron pathway in the yeast growth inhibition phenotype and show that inositol hexakisphosphate is an OspB cofactor. We find that a yeast substrate for OspB is the TORC1 component Tco89p, proteolytic cleavage of which generates a C-terminal fragment that is targeted for degradation via the arginine N-degron pathway; processing and degradation of Tco89p is required for the OspB phenotype. In all, we demonstrate that the Shigella T3SS effector OspB is a cysteine protease and decipher its interplay with eukaryotic cell processes. IMPORTANCEShigella spp. are important human pathogens and among the leading causes of diarrheal mortality worldwide, especially in children. Virulence depends on the Shigella type III secretion system (T3SS). Definition of the roles of the bacterial effector proteins secreted by the T3SS is key to understanding Shigella pathogenesis. The effector protein OspB contributes to a range of phenotypes during infection, yet the mechanism of action is unknown. Here, we show that S. flexneri OspB possesses cysteine protease activity in both yeast and mammalian cells, and that enzymatic activity of OspB depends on a conserved cysteine-histidine catalytic dyad. We determine how its protease activity sensitizes cells to TORC1 inhibition in yeast, finding that OspB cleaves a component of yeast TORC1, and that the degradation of the C-terminal cleavage product is responsible for OspB-mediated hypersensitivity to TORC1 inhibitors. Thus, OspB is a cysteine protease that depends on a conserved cysteine-histidine catalytic dyad.


Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: a phase 2 trial.

  • Jun Tian‎ et al.
  • Nature medicine‎
  • 2023‎

While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.


The present and future of systemic and microenvironment-targeted therapy for pancreatic adenocarcinoma.

  • Arnav Mehta‎ et al.
  • Annals of pancreatic cancer‎
  • 2020‎

Metastatic pancreatic adenocarcinoma remains one of the deadliest cancer diagnoses with 5-year survival rates as low as 3%. For decades, gemcitabine remained the mainstay of systemic therapy before the approvals of FOLFIRINOX and gemcitabine with nab-paclitaxel. Despite these advances in the early 2010s, almost all patients progress on systemic chemotherapy and significant effort is needed to identify novel therapeutic targets. A promising array of approaches is currently under investigation, enabled by deeper understanding of the immune system within the tumor microenvironment (TME) and of the key vulnerabilities in pathways essential for tumor survival. In this review, we will explore the different approaches to boost tumor immunity and to target tumor metabolic pathways that are currently under clinical investigation for systemic treatment, and highlight the promising therapeutic areas that may give rise to the next generation of therapies for pancreatic cancer.


Angiotensin II enhances bacterial clearance via myeloid signaling in a murine sepsis model.

  • Daniel E Leisman‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Sepsis, defined as organ dysfunction caused by a dysregulated host-response to infection, is characterized by immunosuppression. The vasopressor norepinephrine is widely used to treat low blood pressure in sepsis but exacerbates immunosuppression. An alternative vasopressor is angiotensin-II, a peptide hormone of the renin-angiotensin system (RAS), which displays complex immunomodulatory properties that remain unexplored in severe infection. In a murine cecal ligation and puncture (CLP) model of sepsis, we found alterations in the surface levels of RAS proteins on innate leukocytes in peritoneum and spleen. Angiotensin-II treatment induced biphasic, angiotensin-II type 1 receptor (AT1R)-dependent modulation of the systemic inflammatory response and decreased bacterial counts in both the blood and peritoneal compartments, which did not occur with norepinephrine treatment. The effect of angiotensin-II was preserved when treatment was delivered remote from the primary site of infection. At an independent laboratory, angiotensin-II treatment was compared in LysM-Cre AT1aR-/- (Myeloid-AT1a-) mice, which selectively do not express AT1R on myeloid-derived leukocytes, and littermate controls (Myeloid-AT1a+). Angiotensin-II treatment significantly reduced post-CLP bacteremia in Myeloid-AT1a+ mice but not in Myeloid-AT1a- mice, indicating that the AT1R-dependent effect of angiotensin-II on bacterial clearance was mediated through myeloid-lineage cells. Ex vivo, angiotensin-II increased post-CLP monocyte phagocytosis and ROS production after lipopolysaccharide stimulation. These data identify a mechanism by which angiotensin-II enhances the myeloid innate immune response during severe systemic infection and highlight a potential role for angiotensin-II to augment immune responses in sepsis.


Inferring gene regulation from stochastic transcriptional variation across single cells at steady state.

  • Anika Gupta‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.


NLRP11 is a pattern recognition receptor for bacterial lipopolysaccharide in the cytosol of human macrophages.

  • Maricarmen Rojas-Lopez‎ et al.
  • Science immunology‎
  • 2023‎

Endotoxin-bacterial lipopolysaccharide (LPS)-is a driver of lethal infection sepsis through excessive activation of innate immune responses. When delivered to the cytosol of macrophages, cytosolic LPS (cLPS) induces the assembly of an inflammasome that contains caspases-4/5 in humans or caspase-11 in mice. Whereas activation of all other inflammasomes is triggered by sensing of pathogen products by a specific host cytosolic pattern recognition receptor protein, whether pattern recognition receptors for cLPS exist has remained unclear, because caspase-4, caspase-5, and caspase-11 bind and activate LPS directly in vitro. Here, we show that the primate-specific protein NLRP11 is a pattern recognition receptor for cLPS that is required for efficient activation of the caspase-4 inflammasome in human macrophages. In human macrophages, NLRP11 is required for efficient activation of caspase-4 during infection with intracellular Gram-negative bacteria or upon electroporation of LPS. NLRP11 could bind LPS and separately caspase-4, forming a high-molecular weight complex with caspase-4 in HEK293T cells. NLRP11 is present in humans and other primates but absent in mice, likely explaining why it has been overlooked in screens looking for innate immune signaling molecules, most of which have been carried out in mice. Our results demonstrate that NLRP11 is a component of the caspase-4 inflammasome activation pathway in human macrophages.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: