Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Kit regulates HSC engraftment across the human-mouse species barrier.

  • Kadriye Nehir Cosgun‎ et al.
  • Cell stem cell‎
  • 2014‎

In-depth analysis of the cellular and molecular mechanisms regulating human HSC function will require a surrogate host that supports robust maintenance of transplanted human HSCs in vivo, but the currently available options are problematic. Previously we showed that mutations in the Kit receptor enhance engraftment of transplanted HSCs in the mouse. To generate an improved model for human HSC transplantation and analysis, we developed immune-deficient mouse strains containing Kit mutations. We found that mutation of the Kit receptor enables robust, uniform, sustained, and serially transplantable engraftment of human HSCs in adult mice without a requirement for irradiation conditioning. Using this model, we also showed that differential KIT expression identifies two functionally distinct subpopulations of human HSCs. Thus, we have found that the capacity of this Kit mutation to open up stem cell niches across species barriers has significant potential and broad applicability in human HSC research.


Development of novel target modules for retargeting of UniCAR T cells to GD2 positive tumor cells.

  • Nicola Mitwasi‎ et al.
  • Oncotarget‎
  • 2017‎

As the expression of a tumor associated antigen (TAA) is commonly not restricted to tumor cells, adoptively transferred T cells modified to express a conventional chimeric antigen receptor (CAR) might not only destroy the tumor cells but also attack target-positive healthy tissues. Furthermore, CAR T cells in patients with large tumor bulks will unpredictably proliferate and put the patients at high risk of adverse side effects including cytokine storms and tumor lysis syndrome. To overcome these problems, we previously established a modular CAR technology termed UniCAR: UniCAR T cells can repeatedly be turned on and off via dosing of a target module (TM). TMs are bispecific molecules which cross-link UniCAR T cells with target cells. After elimination of the respective TM, UniCAR T cells automatically turn off. Here we describe novel TMs against the disialoganglioside GD2 which is overexpressed in neuroectodermal but also many other tumors. In the presence of GD2-specific TMs, we see a highly efficient target-specific and -dependent activation of UniCAR T cells, secretion of pro-inflammatory cytokines, and tumor cell lysis both in vitro and experimental mice. According to PET-imaging, anti-GD2 TM enrich at the tumor site and are rapidly eliminated thus fulfilling all prerequisites of a UniCAR TM.


Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy.

  • Roberta Aliperta‎ et al.
  • Scientific reports‎
  • 2017‎

Combining stem cells with biomaterial scaffolds provides a promising strategy for the development of drug delivery systems. Here we propose an innovative immunotherapeutic organoid by housing human mesenchymal stromal cells (MSCs), gene-modified for the secretion of an anti-CD33-anti-CD3 bispecific antibody (bsAb), in a small biocompatible star-shaped poly(ethylene glycol)-heparin cryogel scaffold as a transplantable and low invasive therapeutic machinery for the treatment of acute myeloid leukemia (AML). The macroporous biohybrid cryogel platform displays effectiveness in supporting proliferation and survival of bsAb-releasing-MSCs overtime in vitro and in vivo, avoiding cell loss and ensuring a constant release of sustained and detectable levels of bsAb capable of triggering T-cell-mediated anti-tumor responses and a rapid regression of CD33+ AML blasts. This therapeutic device results as a promising and safe alternative to the continuous administration of short-lived immunoagents and paves the way for effective bsAb-based therapeutic strategies for future tumor treatments.


T cells engrafted with a UniCAR 28/z outperform UniCAR BB/z-transduced T cells in the face of regulatory T cell-mediated immunosuppression.

  • Alexandra Kegler‎ et al.
  • Oncoimmunology‎
  • 2019‎

Adoptive transfer of chimeric antigen receptor (CAR)-equipped T cells have demonstrated astonishing clinical efficacy in hematological malignancies recently culminating in the approval of two CAR T cell products. Despite this tremendous success, CAR T cell approaches have still achieved only moderate efficacy against solid tumors. As a major obstacle, engineered conventional T cells (Tconvs) face an anti-inflammatory, hostile tumor microenvironment often infiltrated by highly suppressive regulatory T cells (Tregs). Thus, potent CAR T cell treatment of solid tumors requires efficient activation of Tconvs via their engrafted CAR to overcome Treg-mediated immunosuppression. In that regard, selecting an optimal intracellular signaling domain might represent a crucial step to achieve best clinical efficiency. To shed light on this issue and to investigate responsiveness to Treg inhibition, we engrafted Tconvs with switchable universal CARs (UniCARs) harboring intracellularly the CD3ζ domain alone or in combination with costimulatory CD28 or 4-1BB. Our studies reveal that UniCAR ζ-, and UniCAR BB/ζ-engineered Tconvs are strongly impaired by activated Tregs, whereas UniCARs providing CD28 costimulation overcome Treg-mediated suppression both in vitro and in vivo. Compared to UniCAR ζ- and UniCAR BB/ζ-modified cells, UniCAR 28/ζ-armed Tconvs secrete significantly higher amounts of Th1-related cytokines and, furthermore, levels of these cytokines are elevated even upon exposure to Tregs. Thus, in contrast to 4-1BB costimulation, CD28 signaling in UniCAR-transduced Tconvs seems to foster a pro-inflammatory milieu, which contributes to enhanced resistance to Treg suppression. Overall, our results may have significant implications for CAR T cell-based immunotherapies of solid tumors strongly invaded by Tregs.


VISTA Ligation Reduces Antitumor T-Cell Activity in Pancreatic Cancer.

  • David Digomann‎ et al.
  • Cancers‎
  • 2023‎

Immunotherapy has shown promising results in multiple solid tumors and hematological malignancies. However, pancreatic ductal adenocarcinoma (PDAC) has been largely refractory to current clinical immunotherapies. The V-domain Ig suppressor of T-cell activation (VISTA) inhibits T-cell effector function and maintains peripheral tolerance. Here, we determine VISTA expression in nontumorous pancreatic (n = 5) and PDAC tissue using immunohistochemistry (n = 76) and multiplex immunofluorescence staining (n = 67). Additionally, VISTA expression on tumor-infiltrating immune cells and matched blood samples (n = 13) was measured with multicolor flow cytometry. Further, the effect of recombinant VISTA on T-cell activation was investigated in vitro, and VISTA blockade was tested in an orthotopic PDAC mouse model in vivo. PDAC showed significantly higher VISTA expression compared to that of a nontumorous pancreas. Patients with a high density of VISTA-expressing tumor cells had reduced overall survival. The VISTA expression of CD4+ and CD8+ T cells was increased after stimulation and particularly after a coculture with tumor cells. We detected a higher level of proinflammatory cytokine (TNFα and IFNγ) expression by CD4+ and CD8+ T cells, which was reversed with the addition of recombinant VISTA. A VISTA blockade reduced tumor weights in vivo. The VISTA expression of tumor cells has clinical relevance, and its blockade may be a promising immunotherapeutic strategy for PDAC.


BRAF and MEK inhibitor combinations induce potent molecular and immunological effects in NRAS-mutant melanoma cells: Insights into mode of action and resistance mechanisms.

  • Lisa Dinter‎ et al.
  • International journal of cancer‎
  • 2024‎

About 25% of melanoma harbor activating NRAS mutations, which are associated with aggressive disease therefore requiring a rapid antitumor intervention. However, no efficient targeted therapy options are currently available for patients with NRAS-mutant melanoma. MEK inhibitors (MEKi) appear to display a moderate antitumor activity and also immunological effects in NRAS-mutant melanoma, providing an ideal backbone for combination treatments. In our study, the MEKi binimetinib, cobimetinib and trametinib combined with the BRAF inhibitors (BRAFi) encorafenib, vemurafenib and dabrafenib were investigated for their ability to inhibit proliferation, induce apoptosis and alter the expression of immune modulatory molecules in sensitive NRAS-mutant melanoma cells using two- and three-dimensional cell culture models as well as RNA sequencing analyses. Furthermore, NRAS-mutant melanoma cells resistant to the three BRAFi/MEKi combinations were established to characterize the mechanisms contributing to their resistance. All BRAFi induced a stress response in the sensitive NRAS-mutant melanoma cells thereby significantly enhancing the antiproliferative and proapoptotic activity of the MEKi analyzed. Furthermore, BRAFi/MEKi combinations upregulated immune relevant molecules, such as ICOS-L, components of antigen-presenting machinery and the "don't eat me signal" molecule CD47 in the melanoma cells. The BRAFi/MEKi-resistant, NRAS-mutant melanoma cells counteracted the molecular and immunological effects of BRAFi/MEKi by upregulating downstream mitogen-activated protein kinase pathway molecules, inhibiting apoptosis and promoting immune escape mechanisms. Together, our study reveals potent molecular and immunological effects of BRAFi/MEKi in sensitive NRAS-mutant melanoma cells that may be exploited in new combinational treatment strategies for patients with NRAS-mutant melanoma.


Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence.

  • Armin Ehninger‎ et al.
  • Blood‎
  • 2014‎

Around birth, hematopoietic stem cells (HSCs) expanding in the fetal liver migrate to the developing bone marrow (BM) to mature and expand. To identify the molecular processes associated with HSCs located in the 2 different microenvironments, we compared the expression profiles of HSCs present in the liver and BM of perinatal mice. This revealed the higher expression of a cluster of extracellular matrix-related genes in BM HSCs, with secreted protein acidic and rich in cysteine (SPARC) being one of the most significant ones. This extracellular matrix protein has been described to be involved in tissue development, repair, and remodeling, as well as metastasis formation. Here we demonstrate that SPARC-deficient mice display higher resistance to serial treatment with the chemotherapeutic agent 5-fluorouracil (5-FU). Using straight and reverse chimeras, we further show that this protective effect is not due to a role of SPARC in HSCs, but rather is due to its function in the BM niche. Although the kinetics of recovery of the hematopoietic system is normal, HSCs in a SPARC-deficient niche show an accelerated return to quiescence, protecting them from the lethal effects of serial 5-FU treatment. This may become clinically relevant, as SPARC inhibition and its protective effect on HSCs could be used to optimize chemotherapy schemes.


Retargeting of T lymphocytes to PSCA- or PSMA positive prostate cancer cells using the novel modular chimeric antigen receptor platform technology "UniCAR".

  • Anja Feldmann‎ et al.
  • Oncotarget‎
  • 2017‎

New treatment options especially of solid tumors including for metastasized prostate cancer (PCa) are urgently needed. Recent treatments of leukemias with chimeric antigen receptors (CARs) underline their impressive therapeutic potential. However CARs currently applied in the clinics cannot be repeatedly turned on and off potentially leading to severe life threatening side effects. To overcome these problems, we recently described a modular CAR technology termed UniCAR: UniCAR T cells are inert but can be turned on by application of one or multiple target modules (TMs). Here we present preclinical data summarizing the retargeting of UniCAR T cells to PCa cells using TMs directed to prostate stem cell- (PSCA) or/and prostate specific membrane antigen (PSMA). In the presence of the respective TM(s), we see a highly efficient target-specific and target-dependent activation of UniCAR T cells, secretion of pro-inflammatory cytokines, and PCa cell lysis both in vitro and experimental mice.


Human CLEC9A antibodies deliver Wilms' tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naïve and memory WT1-specific CD8+ T cells.

  • Frances E Pearson‎ et al.
  • Clinical & translational immunology‎
  • 2020‎

Vaccines that prime Wilms' tumor 1 (WT1)-specific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The C-type lectin-like receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ T-cell responses. We developed a new vaccine comprising a human anti-CLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naïve and memory WT1-specific CD8+ T cells.


Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis.

  • Torben Mentrup‎ et al.
  • Nature communications‎
  • 2022‎

Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal β-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses.


Tumor-infiltrating plasmacytoid dendritic cells are associated with survival in human colon cancer.

  • Maximilian Kießler‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

Plasmacytoid dendritic cells (pDCs) play a key role in the induction and maintenance of antitumor immunity. Conversely, they can act as tolerogenic DCs by inhibiting tumor-directed immune responses. Therefore, pDCs may profoundly influence tumor progression. To gain novel insights into the role of pDCs in colon cancer, we investigated the frequency and clinical relevance of pDCs in primary tumor tissues from patients with colon cancer with different clinicopathological characteristics.


"UniCAR"-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells.

  • Nicola Mitwasi‎ et al.
  • Scientific reports‎
  • 2020‎

Antigen-specific redirection of immune effector cells with chimeric antigen receptors (CARs) demonstrated high therapeutic potential for targeting cancers of different origins. Beside CAR-T cells, natural killer (NK) cells represent promising alternative effectors that can be combined with CAR technology. Unlike T cells, primary NK cells and the NK cell line NK-92 can be applied as allogeneic off-the-shelf products with a reduced risk of toxicities. We previously established a modular universal CAR (UniCAR) platform which consists of UniCAR-expressing immune cells that cannot recognize target antigens directly but are redirected by a tumour-specific target module (TM). The TM contains an antigen-binding moiety fused to a peptide epitope which is recognized by the UniCAR molecule, thereby allowing an on/off switch of CAR activity, and facilitating flexible targeting of various tumour antigens depending on the presence and specificity of the TM. Here, we provide proof of concept that it is feasible to generate a universal off-the-shelf cellular therapeutic based on UniCAR NK-92 cells targeted to tumours expressing the disialoganglioside GD2 by GD2-specific TMs that are either based on an antibody-derived single-chain fragment variable (scFv) or an IgG4 backbone. Redirected UniCAR NK-92 cells induced specific killing of GD2-expressing cells in vitro and in vivo, associated with enhanced production of interferon-γ. Analysis of radiolabelled proteins demonstrated that the IgG4-based format increased the in vivo half-life of the TM markedly in comparison to the scFv-based molecule. In summary, UniCAR NK-92 cells represent a universal off-the-shelf platform that is highly effective and flexible, allowing the use of different TM formats for specific tumour targeting.


AXL Inhibition in Macrophages Stimulates Host-versus-Leukemia Immunity and Eradicates Naïve and Treatment-Resistant Leukemia.

  • Irene Tirado-Gonzalez‎ et al.
  • Cancer discovery‎
  • 2021‎

Acute leukemias are systemic malignancies associated with a dire outcome. Because of low immunogenicity, leukemias display a remarkable ability to evade immune control and are often resistant to checkpoint blockade. Here, we discover that leukemia cells actively establish a suppressive environment to prevent immune attacks by co-opting a signaling axis that skews macrophages toward a tumor-promoting tissue repair phenotype, namely the GAS6/AXL axis. Using aggressive leukemia models, we demonstrate that ablation of the AXL receptor specifically in macrophages, or its ligand GAS6 in the environment, stimulates antileukemic immunity and elicits effective and lasting natural killer cell- and T cell-dependent immune response against naïve and treatment-resistant leukemia. Remarkably, AXL deficiency in macrophages also enables PD-1 checkpoint blockade in PD-1-refractory leukemias. Finally, we provide proof-of-concept that a clinical-grade AXL inhibitor can be used in combination with standard-of-care therapy to cure established leukemia, regardless of AXL expression in malignant cells. SIGNIFICANCE: Alternatively primed myeloid cells predict negative outcome in leukemia. By demonstrating that leukemia cells actively evade immune control by engaging AXL receptor tyrosine kinase in macrophages and promoting their alternative priming, we identified a target which blockade, using a clinical-grade inhibitor, is vital to unleashing the therapeutic potential of myeloid-centered immunotherapy.This article is highlighted in the In This Issue feature, p. 2659.


Immune Surveillance of Acute Myeloid Leukemia Is Mediated by HLA-Presented Antigens on Leukemia Progenitor Cells.

  • Annika Nelde‎ et al.
  • Blood cancer discovery‎
  • 2023‎

Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML.


Unexpected recombinations in single chain bispecific anti-CD3-anti-CD33 antibodies can be avoided by a novel linker module.

  • Slava Stamova‎ et al.
  • Molecular immunology‎
  • 2011‎

CD33 is an attractive immunotarget on the surface of tumor cells from patients with acute myeloid leukemia (AML). In a first attempt for immunotargeting of AML blasts we constructed two bispecific antibodies in the single chain bispecific diabody (scBsDb) format by fusing the variable domains of monoclonal antibodies directed against CD3 and CD33. Unfortunately, protein expression of both scBsDbs resulted in varying mixtures of fragmented and full length proteins. As the non-functional fragments competed with the functional full length antibodies we tried to understand the reason for the fragmentation. We found that the anti-CD3 and anti-CD33 antibody genes show striking sequence homologies: during B cell development the same V(h) J558 heavy and V(l) kk4 light chain genes were selected. Moreover, the closely related D genes DSP2 (9 and 11) were combined with the same JH4 gene. And finally, during VJ recombination of the light chain the same JK5 element was selected. These homologies between the two monoclonal antibodies were the reason for recombinations in the cell lines generated for expression of the scBsDbs. Finally, we solved this problem by (i) rearranging the order of the heavy and light chains of the anti-CD3 and anti-CD33 domains, and (ii) a replacement of one of the commonly used glycine serine linkers with a novel linker domain. The resulting bispecific antibody in a single chain bispecific tandem format (scBsTaFv) was stable and capable of redirecting T cells to CD33-positive tumor cells including AML blasts of patients.


Phenotype, Function, and Mobilization of 6-Sulfo LacNAc-Expressing Monocytes in Atopic Dermatitis.

  • Wojciech Baran‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Mononuclear phagocytes (MPs) are important immune regulatory cells in atopic dermatitis (AD). We previously identified 6-sulfo LacNAc-expressing monocytes (slanMo) as TNF-α- and IL-23-producing cells in psoriatic skin lesions and as inducers of IFN-γ-, IL-17-, and IL-22-producing T cells. These cytokines are also upregulated in AD and normalize with treatment, as recently shown for dupilumab-treated patients. We here asked for the role of slanMo in AD. Increased numbers of slanMo were found in AD skin lesions. In difference to other MPs in AD, slanMo lacked expression of FcɛRI, CD1a, CD14, and CD163. slanMo from blood of patients with AD expressed increased levels of CD86 and produced IL-12 and TNF-α at higher amounts than CD14+ monocytes and myeloid dendritic cells. While CD14+ monocytes from patients with AD revealed a reduced IL-12 production, we observed no difference in the cytokine production comparing slanMo in AD and healthy controls. Interestingly, experimentally induced mental stress, a common trigger of flares in patients with AD, rapidly mobilized slanMo which retained their high TNF-α-producing capacity. This study identifies slanMo as a distinct population of inflammatory cells in skin lesions and as proinflammatory blood cells in patients with AD. slanMo may, therefore, represent a potent future target for treatment of AD.


Characterization of a novel single-chain bispecific antibody for retargeting of T cells to tumor cells via the TCR co-receptor CD8.

  • Irene Michalk‎ et al.
  • PloS one‎
  • 2014‎

There is currently growing interest in retargeting of effector T cells to tumor cells via bispecific antibodies (bsAbs). Usually, bsAbs are directed on the one hand to the CD3 complex of T cells and on the other hand to a molecule expressed on the surface of the target cell. A bsAb-mediated cross-linkage via CD3 leads to an activation of CD8+ T cells and consequently to killing of the target cells. In parallel, CD4+ T cells including TH1, TH2, TH17 cells and even regulatory T cells (Tregs) will be activated as well. Cytokines produced by CD4+ T cells can contribute to severe side effects e. g. life-threatening cytokine storms and, thinking of the immunosupressive function of Tregs, can even be counterproductive. Therefore, we asked whether or not it is feasible to limit retargeting to CD8+ T cells e. g. via targeting of the co-receptor CD8 instead of CD3. In order to test for proof of concept, a novel bsAb with specificity for CD8 and a tumor-associated surface antigen was constructed. Interestingly, we found that pre-activated (but not freshly isolated) CD8+ T cells can be retargeted via CD8-engaging bsAbs leading to an efficient lysis of target cells.


Engrafting human regulatory T cells with a flexible modular chimeric antigen receptor technology.

  • Stefanie Koristka‎ et al.
  • Journal of autoimmunity‎
  • 2018‎

As regulatory T cells (Tregs) play a fundamental role in immune homeostasis their adoptive transfer emerged as a promising treatment strategy for inflammation-related diseases. Preclinical animal models underline the superiority of antigen-specific Tregs compared to polyclonal cells. Here, we applied a modular chimeric antigen receptor (CAR) technology called UniCAR for generation of antigen-specific human Tregs. In contrast to conventional CARs, UniCAR-endowed Tregs are indirectly linked to their target cells via a separate targeting module (TM). Thus, transduced Tregs can be applied universally as their antigen-specificity is easily adjusted by TM exchange. Activation of UniCAR-engrafted Tregs occurred in strict dependence on the TM, facilitating a precise control over Treg activity. In order to augment efficacy and safety, different intracellular signaling domains were tested. Both 4-1BB (CD137) and CD28 costimulation induced strong suppressive function of genetically modified Tregs. However, in light of safety issues, UniCARs comprising a CD137-CD3ζ signaling domain emerged as constructs of choice for a clinical application of redirected Tregs. In that regard, Tregs isolated from patients suffering from autoimmune or inflammatory diseases were, for the first time, successfully engineered with UniCAR 137/ζ and efficiently suppressed patient-derived effector cells. Overall, the UniCAR platform represents a promising approach to improve Treg-based immunotherapies for tolerance induction.


Neoadjuvant Radiochemotherapy Significantly Alters the Phenotype of Plasmacytoid Dendritic Cells and 6-Sulfo LacNAc+ Monocytes in Rectal Cancer.

  • Felix Wagner‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Neoadjuvant radiochemotherapy (nRCT) can significantly influence the tumor immune architecture that plays a pivotal role in regulating tumor growth. Whereas, various studies have investigated the effect of nRCT on tumor-infiltrating T cells, little is known about its impact on the frequency and activation status of human dendritic cells (DCs). Plasmacytoid DCs (pDCs) essentially contribute to the regulation of innate and adaptive immunity and may profoundly influence tumor progression. Recent studies have revealed that higher pDC numbers are associated with poor prognosis in cancer patients. 6-sulfo LacNAc-expressing monocytes (slanMo) represent a particular proinflammatory subset of human non-classical blood monocytes that can differentiate into DCs. Recently, we have reported that activated slanMo produce various proinflammatory cytokines and efficiently stimulate natural killer cells and T lymphocytes. slanMo were also shown to accumulate in clear cell renal cell carcinoma (ccRCC) and in metastatic lymph nodes from cancer patients. Here, we investigated the influence of nRCT on the frequency of rectal cancer-infiltrating pDCs and slanMo. When evaluating rectal cancer tissues obtained from patients after nRCT, a significantly higher density of pDCs in comparison to pre-nRCT tissue samples was found. In contrast, the density of slanMo was not significantly altered by nRCT. Further studies revealed that nRCT significantly enhances the proportion of rectal cancer-infiltrating CD8+ T cells expressing the cytotoxic effector molecule granzyme B. When exploring the impact of nRCT on the phenotype of rectal cancer-infiltrating pDCs and slanMo, we observed that nRCT markedly enhances the percentage of inducible nitric oxide synthase (iNOS)- or tumor necrosis factor (TNF) alpha-producing slanMo. Furthermore, nRCT significantly increased the percentage of mature CD83+ pDCs in rectal cancer tissues. Moreover, the proportion of pDCs locally expressing interferon-alpha, which plays a major role in antitumor immunity, was significantly higher in post-nRCT tissues compared to pre-nRCT tumor specimens. These novel findings indicate that nRCT significantly influences the frequency and/or phenotype of pDCs, slanMo, and CD8+ T cells, which may influence the clinical response of rectal cancer patients to nRCT.


And Yet It Moves: Oxidation of the Nuclear Autoantigen La/SS-B Is the Driving Force for Nucleo-Cytoplasmic Shuttling.

  • Nicole Berndt‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Decades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress. Unfortunately, these harsh conditions could also cause an artificial release of La protein. Even until today, the shuttling and the cytoplasmic function of La/SS-B is controversially discussed. Moreover, the driving mechanism for the shuttling of La protein remains unclear. Recently, we showed that La protein undergoes redox-dependent conformational changes. Moreover, we developed anti-La monoclonal antibodies (anti-La mAbs), which are specific for either the reduced form of La protein or the oxidized form. Using these tools, here we show that redox-dependent conformational changes are the driving force for the shuttling of La protein. Moreover, we show that translocation of La protein to the cytoplasm can be triggered in a ligand/receptor-dependent manner under physiological conditions. We show that ligands of toll-like receptors lead to a redox-dependent shuttling of La protein. The shuttling of La protein depends on the redox status of the respective cell type. Endothelial cells are usually resistant to the shuttling of La protein, while dendritic cells are highly sensitive. However, the deprivation of intracellular reducing agents in endothelial cells makes endothelial cells sensitive to a redox-dependent shuttling of La protein.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: