Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 170 papers

FBXW7 modulates cellular stress response and metastatic potential through ​HSF1 post-translational modification.

  • Nikos Kourtis‎ et al.
  • Nature cell biology‎
  • 2015‎

​Heat-shock factor 1 (​HSF1) orchestrates the heat-shock response in eukaryotes. Although this pathway has evolved to help cells adapt in the presence of challenging conditions, it is co-opted in cancer to support malignancy. However, the mechanisms that regulate ​HSF1 and thus cellular stress response are poorly understood. Here we show that the ubiquitin ligase ​FBXW7α interacts with ​HSF1 through a conserved motif phosphorylated by ​GSK3β and ​ERK1. ​FBXW7α ubiquitylates ​HSF1 and loss of ​FBXW7α results in impaired degradation of nuclear ​HSF1 and defective heat-shock response attenuation. ​FBXW7α is either mutated or transcriptionally downregulated in melanoma and ​HSF1 nuclear stabilization correlates with increased metastatic potential and disease progression. ​FBXW7α deficiency and subsequent ​HSF1 accumulation activates an invasion-supportive transcriptional program and enhances the metastatic potential of human melanoma cells. These findings identify a post-translational mechanism of regulation of the ​HSF1 transcriptional program both in the presence of exogenous stress and in cancer.


Limited miR-17-92 overexpression drives hematologic malignancies.

  • Laura S Danielson‎ et al.
  • Leukemia research‎
  • 2015‎

The overexpression of microRNA cluster miR-17-92 has been implicated in development of solid tumors and hematological malignancies. The role of miR-17-92 in lymphomagenesis has been extensively investigated; however, because of the developmental defects caused by miR-17-92 dysregulation, its ability to drive tumorigenesis has remained undetermined until recently. Here we demonstrate that overexpression of miR-17-92 in a limited number of hematopoietic cells is sufficient to cause B cell malignancies. In sum, our study provides a novel and physiologically relevant model that exposes the potent ability of miR-17-92 to act as a driver of tumorigenesis.


The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.

  • Jie Gao‎ et al.
  • eLife‎
  • 2015‎

Little is known on post-transcriptional regulation of adult and embryonic stem cell maintenance and differentiation. Here we characterize the role of Ddb1, a component of the CUL4-DDB1 ubiquitin ligase complex. Ddb1 is highly expressed in multipotent hematopoietic progenitors and its deletion leads to abrogation of both adult and fetal hematopoiesis, targeting specifically transiently amplifying progenitor subsets. However, Ddb1 deletion in non-dividing lymphocytes has no discernible phenotypes. Ddb1 silencing activates Trp53 pathway and leads to significant effects on cell cycle progression and rapid apoptosis. The abrogation of hematopoietic progenitor cells can be partially rescued by simultaneous deletion of Trp53. Conversely, depletion of DDB1 in embryonic stem cell (ESC) leads to differentiation albeit negative effects on cell cycle and apoptosis. Mass spectrometry reveals differing protein interactions between DDB1 and distinct DCAFs, the substrate recognizing components of the E3 complex, between cell types. Our studies identify CUL4-DDB1 complex as a novel post-translational regulator of stem and progenitor maintenance and differentiation.


Higher-order looping and nuclear organization of Tcra facilitate targeted rag cleavage and regulated rearrangement in recombination centers.

  • Julie Chaumeil‎ et al.
  • Cell reports‎
  • 2013‎

V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigens. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3' end of individual antigen receptor loci poised for rearrangement; however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here, we show that monoallelic looping out of the 3' end of the T cell receptor α (Tcra) locus, coupled with transcription and increased chromatin/nuclear accessibility, is linked to focal RAG binding and ATM-mediated regulation of monoallelic cleavage on looped-out 3' regions. Our data identify higher-order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability.


The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival.

  • Malay Mandal‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

The pre-T cell receptor (TCR) is expressed early during T cell development and imposes a tight selection for differentiating T cell progenitors. Pre-TCR-expressing cells are selected to survive and differentiate further, whereas pre-TCR(-) cells are "negatively" selected to die. The mechanisms of pre-TCR-mediated survival are poorly understood. Here, we describe the induction of the antiapoptotic gene BCL2A1 (A1) as a potential mechanism regulating inhibition of pre-T cell death. We characterize in detail the signaling pathway involved in A1 induction and show that A1 expression can induce pre-T cell survival by inhibiting activation of caspase-3. Moreover, we show that in vitro "knockdown" of A1 expression can compromise survival even in the presence of a functional pre-TCR. Finally, we suggest that pre-TCR-induced A1 overexpression can contribute to T cell leukemia in both mice and humans.


The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia.

  • Benjamin J Thompson‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Recent studies have shown that activating mutations of NOTCH1 are responsible for the majority of T cell acute lymphoblastic leukemia (T-ALL) cases. Most of these mutations truncate its C-terminal domain, a region that is important for the NOTCH1 proteasome-mediated degradation. We report that the E3 ligase FBW7 targets NOTCH1 for ubiquitination and degradation. Our studies map in detail the amino acid degron sequence required for NOTCH1-FBW7 interaction. Furthermore, we identify inactivating FBW7 mutations in a large fraction of human T-ALL lines and primary leukemias. These mutations abrogate the binding of FBW7 not only to NOTCH1 but also to the two other characterized targets, c-Myc and cyclin E. The majority of the FBW7 mutations were present during relapse, and they were associated with NOTCH1 HD mutations. Interestingly, most of the T-ALL lines harboring FBW7 mutations were resistant to gamma-secretase inhibitor treatment and this resistance appeared to be related to the stabilization of the c-Myc protein. Our data suggest that FBW7 is a novel tumor suppressor in T cell leukemia, and implicate the loss of FBW7 function as a potential mechanism of drug resistance in T-ALL.


ETV1 activates a rapid conduction transcriptional program in rodent and human cardiomyocytes.

  • Akshay Shekhar‎ et al.
  • Scientific reports‎
  • 2018‎

Rapid impulse propagation is a defining attribute of the pectinated atrial myocardium and His-Purkinje system (HPS) that safeguards against atrial and ventricular arrhythmias, conduction block, and myocardial dyssynchrony. The complex transcriptional circuitry that dictates rapid conduction remains incompletely understood. Here, we demonstrate that ETV1 (ER81)-dependent gene networks dictate the unique electrophysiological characteristics of atrial and His-Purkinje myocytes. Cardiomyocyte-specific deletion of ETV1 results in cardiac conduction abnormalities, decreased expression of rapid conduction genes (Nkx2-5, Gja5, and Scn5a), HPS hypoplasia, and ventricularization of the unique sodium channel properties that define Purkinje and atrial myocytes in the adult heart. Forced expression of ETV1 in postnatal ventricular myocytes (VMs) reveals that ETV1 promotes a HPS gene signature while diminishing ventricular and nodal gene networks. Remarkably, ETV1 induction in human induced pluripotent stem cell-derived cardiomyocytes increases rapid conduction gene expression and inward sodium currents, converting them towards a HPS phenotype. Our data identify a cardiomyocyte-autonomous, ETV1-dependent pathway that is responsible for specification of rapid conduction zones in the heart and demonstrate that ETV1 is sufficient to promote a HPS transcriptional and functional program upon VMs.


Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.

  • Yixiao Gong‎ et al.
  • Nature communications‎
  • 2018‎

The metazoan genome is compartmentalized in areas of highly interacting chromatin known as topologically associating domains (TADs). TADs are demarcated by boundaries mostly conserved across cell types and even across species. However, a genome-wide characterization of TAD boundary strength in mammals is still lacking. In this study, we first use fused two-dimensional lasso as a machine learning method to improve Hi-C contact matrix reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation score. We demonstrate that higher TAD boundary insulation scores are associated with elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that super-enhancers are preferentially insulated by strong boundaries. Furthermore, we demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-duplicated in cancer patients. Taken together, our findings suggest that super-enhancers insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote oncogenesis.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


CXCR4 signaling directs Igk recombination and the molecular mechanisms of late B lymphopoiesis.

  • Malay Mandal‎ et al.
  • Nature immunology‎
  • 2019‎

In B lymphopoiesis, activation of the pre-B cell antigen receptor (pre-BCR) is associated with both cell cycle exit and Igk recombination. Yet how the pre-BCR mediates these functions remains unclear. Here, we demonstrate that the pre-BCR initiates a feed-forward amplification loop mediated by the transcription factor interferon regulatory factor 4 and the chemokine receptor C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 ligation by C-X-C motif chemokine ligand 12 activates the mitogen-activated protein kinase extracellular-signal-regulated kinase, which then directs the development of small pre- and immature B cells, including orchestrating cell cycle exit, pre-BCR repression, Igk recombination and BCR expression. In contrast, pre-BCR expression and escape from interleukin-7 have only modest effects on B cell developmental transcriptional and epigenetic programs. These data show a direct and central role for CXCR4 in orchestrating late B cell lymphopoiesis. Furthermore, in the context of previous findings, our data provide a three-receptor system sufficient to recapitulate the essential features of B lymphopoiesis in vitro.


Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression.

  • Luisa Cimmino‎ et al.
  • Cell‎
  • 2017‎

Loss-of-function mutations in TET2 occur frequently in patients with clonal hematopoiesis, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML) and are associated with a DNA hypermethylation phenotype. To determine the role of TET2 deficiency in leukemia stem cell maintenance, we generated a reversible transgenic RNAi mouse to model restoration of endogenous Tet2 expression. Tet2 restoration reverses aberrant hematopoietic stem and progenitor cell (HSPC) self-renewal in vitro and in vivo. Treatment with vitamin C, a co-factor of Fe2+ and α-KG-dependent dioxygenases, mimics TET2 restoration by enhancing 5-hydroxymethylcytosine formation in Tet2-deficient mouse HSPCs and suppresses human leukemic colony formation and leukemia progression of primary human leukemia PDXs. Vitamin C also drives DNA hypomethylation and expression of a TET2-dependent gene signature in human leukemia cell lines. Furthermore, TET-mediated DNA oxidation induced by vitamin C treatment in leukemia cells enhances their sensitivity to PARP inhibition and could provide a safe and effective combination strategy to selectively target TET deficiency in cancer. PAPERCLIP.


NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains.

  • Priscillia Lhoumaud‎ et al.
  • Nature communications‎
  • 2019‎

CTCF and cohesin play a key role in organizing chromatin into topologically associating domain (TAD) structures. Disruption of a single CTCF binding site is sufficient to change chromosomal interactions leading to alterations in chromatin modifications and gene regulation. However, the extent to which alterations in chromatin modifications can disrupt 3D chromosome organization leading to transcriptional changes is unknown. In multiple myeloma, a 4;14 translocation induces overexpression of the histone methyltransferase, NSD2, resulting in expansion of H3K36me2 and shrinkage of antagonistic H3K27me3 domains. Using isogenic cell lines producing high and low levels of NSD2, here we find oncogene activation is linked to alterations in H3K27ac and CTCF within H3K36me2 enriched chromatin. A logistic regression model reveals that differentially expressed genes are significantly enriched within the same insulated domain as altered H3K27ac and CTCF peaks. These results identify a bidirectional relationship between 2D chromatin and 3D genome organization in gene regulation.


Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis.

  • Loredana Moro‎ et al.
  • Nature cell biology‎
  • 2020‎

Epigenetic plasticity is a pivotal factor that drives metastasis. Here, we show that the promoter of the gene that encodes the ubiquitin ligase subunit FBXL7 is hypermethylated in advanced prostate and pancreatic cancers, correlating with decreased FBXL7 mRNA and protein levels. Low FBXL7 mRNA levels are predictive of poor survival in patients with pancreatic and prostatic cancers. FBXL7 mediates the ubiquitylation and proteasomal degradation of active c-SRC after its phosphorylation at Ser 104. The DNA-demethylating agent decitabine recovers FBXL7 expression and limits epithelial-to-mesenchymal transition and cell invasion in a c-SRC-dependent manner. In vivo, FBXL7-depleted cancer cells form tumours with a high metastatic burden. Silencing of c-SRC or treatment with the c-SRC inhibitor dasatinib together with FBXL7 depletion prevents metastases. Furthermore, decitabine reduces metastases derived from prostate and pancreatic cancer cells in a FBXL7-dependent manner. Collectively, this research implicates FBXL7 as a metastasis-suppressor gene and suggests therapeutic strategies to counteract metastatic dissemination of pancreatic and prostatic cancer cells.


H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition.

  • Patrice Nancy‎ et al.
  • The Journal of clinical investigation‎
  • 2018‎

Uncovering the causes of pregnancy complications such as preterm labor requires greater insight into how the uterus remains in a noncontractile state until term and then surmounts this state to enter labor. Here, we show that dynamic generation and erasure of the repressive histone modification tri-methyl histone H3 lysine 27 (H3K27me3) in decidual stromal cells dictate both elements of pregnancy success in mice. In early gestation, H3K27me3-induced transcriptional silencing of select gene targets ensured uterine quiescence by preventing the decidua from expressing parturition-inducing hormone receptors, manifesting type 1 immunity, and most unexpectedly, generating myofibroblasts and associated wound-healing responses. In late gestation, genome-wide H3K27 demethylation allowed for target gene upregulation, decidual activation, and labor entry. Pharmacological inhibition of H3K27 demethylation in late gestation not only prevented term parturition, but also inhibited delivery while maintaining pup viability in a noninflammatory model of preterm parturition. Immunofluorescence analysis of human specimens suggested that similar regulatory events might occur in the human decidua. Together, these results reveal the centrality of regulated gene silencing in the uterine adaptation to pregnancy and suggest new areas in the study and treatment of pregnancy disorders.


Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation.

  • Eric Wang‎ et al.
  • Cell stem cell‎
  • 2021‎

Lack of cellular differentiation is a hallmark of many human cancers, including acute myeloid leukemia (AML). Strategies to overcome such a differentiation blockade are an approach for treating AML. To identify targets for differentiation-based therapies, we applied an integrated cell surface-based CRISPR platform to assess genes involved in maintaining the undifferentiated state of leukemia cells. Here we identify the RNA-binding protein ZFP36L2 as a critical regulator of AML maintenance and differentiation. Mechanistically, ZFP36L2 interacts with the 3' untranslated region of key myeloid maturation genes, including the ZFP36 paralogs, to promote their mRNA degradation and suppress terminal myeloid cell differentiation. Genetic inhibition of ZFP36L2 restores the mRNA stability of these targeted transcripts and ultimately triggers myeloid differentiation in leukemia cells. Epigenome profiling of several individuals with primary AML revealed enhancer modules near ZFP36L2 that associated with distinct AML cell states, establishing a coordinated epigenetic and post-transcriptional mechanism that shapes leukemic differentiation.


Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency.

  • Simon E Vidal‎ et al.
  • Stem cell reports‎
  • 2020‎

Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency.


STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia.

  • Shella Saint Fleur-Lominy‎ et al.
  • Cell reports‎
  • 2018‎

T cell acute lymphoblastic leukemia (T-ALL) is commonly associated with activating mutations in the NOTCH1 pathway. Recent reports have shown a link between NOTCH1 signaling and intracellular Ca2+ homeostasis in T-ALL. Here, we investigate the role of store-operated Ca2+ entry (SOCE) mediated by the Ca2+ channel ORAI1 and its activators STIM1 and STIM2 in T-ALL. Deletion of STIM1 and STIM2 in leukemic cells abolishes SOCE and significantly prolongs the survival of mice in a NOTCH1-dependent model of T-ALL. The survival advantage is unrelated to the leukemic cell burden but is associated with the SOCE-dependent ability of malignant T lymphoblasts to cause inflammation in leukemia-infiltrated organs. Mice with STIM1/STIM2-deficient T-ALL show a markedly reduced necroinflammatory response in leukemia-infiltrated organs and downregulation of signaling pathways previously linked to cancer-induced inflammation. Our study shows that leukemic T lymphoblasts cause inflammation of leukemia-infiltrated organs that is dependent on SOCE.


Decreased cytotoxic T cells and TCR clonality in organ transplant recipients with squamous cell carcinoma.

  • Nicholas Frazzette‎ et al.
  • NPJ precision oncology‎
  • 2020‎

T-cell landscape differences between cutaneous squamous cell carcinoma (cSCC) tumors in immune competent (SCC in IC) and immunocompromised organ transplant recipients (TSCC in OTR) are unclear. We developed an analytical method to define tumor infiltrating lymphocyte (TIL) phenotype in cSCC from immune competent and immune suppressed patients using single-cell TCR sequencing and gene expression data. TSCC exhibits reduced proportions of cytotoxic and naïve TILs and similar numbers of regulatory TILs. Fewer, more heterogeneous TCR clonotypes are observed in TIL from OTR. Most TCR sequences for top ten clonotypes correspond to known antigens, while 24% correspond to putative neoantigens. OTR show increased cSCC events over 12 months possibly due to reduced cytotoxic T-cells. Our novel method of barcoding CD8+ T-cells is the first providing gene expression and TCR sequences in cSCC. Knowledge regarding putative antigens recognized by TCRs with phenotypic function of T-cells bearing those TCRs could facilitate personalized cSCC treatments.


Targeting the Atf7ip-Setdb1 Complex Augments Antitumor Immunity by Boosting Tumor Immunogenicity.

  • Hai Hu‎ et al.
  • Cancer immunology research‎
  • 2021‎

Substantial progress has been made in understanding how tumors escape immune surveillance. However, few measures to counteract tumor immune evasion have been developed. Suppression of tumor antigen expression is a common adaptive mechanism that cancers use to evade detection and destruction by the immune system. Epigenetic modifications play a critical role in various aspects of immune invasion, including the regulation of tumor antigen expression. To identify epigenetic regulators of tumor antigen expression, we established a transplantable syngeneic tumor model of immune escape with silenced antigen expression and used this system as a platform for a CRISPR-Cas9 suppressor screen for genes encoding epigenetic modifiers. We found that disruption of the genes encoding either of the chromatin modifiers activating transcription factor 7-interacting protein (Atf7ip) or its interacting partner SET domain bifurcated histone lysine methyltransferase 1 (Setdb1) in tumor cells restored tumor antigen expression. This resulted in augmented tumor immunogenicity concomitant with elevated endogenous retroviral (ERV) antigens and mRNA intron retention. ERV disinhibition was associated with a robust type I interferon response and increased T-cell infiltration, leading to rejection of cells lacking intact Atf7ip or Setdb1. ATF7IP or SETDB1 expression inversely correlated with antigen processing and presentation pathways, interferon signaling, and T-cell infiltration and cytotoxicity in human cancers. Our results provide a rationale for targeting Atf7ip or Setdb1 in cancer immunotherapy.


Combined Inhibition of SHP2 and CXCR1/2 Promotes Antitumor T-cell Response in NSCLC.

  • Kwan Ho Tang‎ et al.
  • Cancer discovery‎
  • 2022‎

SHP2 inhibitors (SHP2i) alone and in various combinations are being tested in multiple tumors with overactivation of the RAS/ERK pathway. SHP2 plays critical roles in normal cell signaling; hence, SHP2is could influence the tumor microenvironment. We found that SHP2i treatment depleted alveolar and M2-like macrophages, induced tumor-intrinsic CCL5/CXCL10 secretion, and promoted B and T lymphocyte infiltration in Kras- and Egfr-mutant non-small cell lung cancer (NSCLC). However, treatment also increased intratumor granulocytic myeloid-derived suppressor cells (gMDSC) via tumor-intrinsic, NFκB-dependent production of CXCR2 ligands. Other RAS/ERK pathway inhibitors also induced CXCR2 ligands and gMDSC influx in mice, and CXCR2 ligands were induced in tumors from patients on KRASG12C inhibitor trials. Combined SHP2 (SHP099)/CXCR1/2 (SX682) inhibition depleted a specific cluster of S100a8/9 hi gMDSCs, generated Klrg1 + CD8+ effector T cells with a strong cytotoxic phenotype but expressing the checkpoint receptor NKG2A, and enhanced survival in Kras- and Egfr-mutant models. Our results argue for testing RAS/ERK pathway/CXCR1/2/NKG2A inhibitor combinations in patients with NSCLC. SIGNIFICANCE: Our study shows that inhibiting the SHP2/RAS/ERK pathway triggers NFκB-dependent upregulation of CXCR2 ligands and recruitment of S100A8hi gMDSCs, which suppress T cells. Combining SHP2/CXCR2 inhibitors blocks gMDSC immigration, resulting in enhanced Th1 polarization, induced CD8+KLRG1+ effector T cells with high cytotoxic activity, and improved survival in multiple NSCLC models.This article is highlighted in the In This Issue feature, p. 1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: