Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Identification of neutrophil granule glycoproteins as Lewis(x)-containing ligands cleared by the scavenger receptor C-type lectin.

  • Sarah A Graham‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

The scavenger receptor C-type lectin (SRCL) is a glycan-binding receptor that has the capacity to mediate endocytosis of glycoproteins carrying terminal Lewis(x) groups (Galβ1-4(Fucα1-3)GlcNAc). A screen for glycoprotein ligands for SRCL using affinity chromatography on immobilized SRCL followed by mass spectrometry-based proteomic analysis revealed that soluble glycoproteins from secondary granules of neutrophils, including lactoferrin and matrix metalloproteinases 8 and 9, are major ligands. Binding competition and surface plasmon resonance analysis showed affinities in the low micromolar range. Comparison of SRCL binding to neutrophil and milk lactoferrin indicates that the binding is dependent on cell-specific glycosylation in the neutrophils, as the milk form of the glycoprotein is a much poorer ligand. Binding to neutrophil glycoproteins is fucose-dependent, and mass spectrometry-based glycomic analysis of neutrophil and milk lactoferrin was used to establish a correlation between high affinity binding to SRCL and the presence of multiple clustered terminal Lewis(x) groups on a heterogeneous mixture of branched glycans, some with poly N-acetyllactosamine extensions. The ability of SRCL to mediate uptake of neutrophil lactoferrin was confirmed using fibroblasts transfected with SRCL. The common presence of Lewis(x) groups in granule protein glycans can thus target granule proteins for clearance by SRCL. PCR and immunohistochemical analysis confirm that SRCL is widely expressed on endothelial cells and thus represents a distributed system that could scavenge released neutrophil glycoproteins both locally at sites of inflammation or systemically when they are released in the circulation.


Early murine T-lymphocyte activation is accompanied by a switch from N-Glycolyl- to N-acetyl-neuraminic acid and generation of ligands for siglec-E.

  • Pierre Redelinghuys‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

It is well established that murine T-lymphocyte activation is accompanied by major changes in cell-surface sialylation, potentially influencing interactions with sialic acid-binding immunoglobulin-like lectins (siglecs). In the present study, we analyzed early activation of murine CD4+ and CD8+ T-lymphocytes at 24 h. We observed a striking and selective up-regulation in the binding of a recombinant soluble form of siglec-E, an inhibitory siglec, which is expressed on several myeloid cell types including antigen-presenting dendritic cells. In contrast, much lower levels of T cell binding were observed with other siglecs, including sialoadhesin, CD22, and siglec-F and the plant lectins Maackia amurensis leukoagglutinin and Sambucus nigra agglutinin. By mass spectrometry, the sialic acid content of 24-h-activated CD4+ and CD8+ T-lymphocytes exhibited an increased proportion of N-acetyl-neuraminic acid (NeuAc) to N-glycolyl-neuraminic acid (NeuGc) in N-glycans. Reduced levels of NeuGc on the surface of activated T cells were demonstrated using an antibody specific for NeuGc and the expression levels of the gene encoding NeuAc- to NeuGc-converting enzyme, CMP-NeuAc hydroxylase, were also reduced. Siglec-E bound a wide range of sialylated structures in glycan arrays, had a preference for NeuAc versus NeuGc-terminated sequences and could recognize a set of sialoglycoproteins that included CD45, in lysates from activated T-lymphocytes. Collectively, these results show that early in T cell activation, glycan remodelling involves a switch from NeuGc- to NeuAc-terminating oligosaccharides on cell surface glycoproteins. This is associated with a strong up-regulation of siglec-E ligands, which may be important in promoting cellular interactions between early activated T-lymphocytes and myeloid cells expressing this inhibitory receptor.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: