Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts.

  • Brett Deml‎ et al.
  • PLoS genetics‎
  • 2015‎

Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the identification of MAB21L2 as a novel factor involved in human coloboma and highlight the power of genome editing manipulation in model organisms for analysis of the effects of whole exome variation in humans.


Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma.

  • Brett Deml‎ et al.
  • European journal of human genetics : EJHG‎
  • 2016‎

Anophthalmia and microphthalmia (A/M) are developmental ocular malformations defined as the complete absence or reduction in size of the eye. A/M is a highly heterogeneous disorder with SOX2 and FOXE3 playing major roles in dominant and recessive pedigrees, respectively; however, the majority of cases lack a genetic etiology. We analyzed 28 probands affected with A/M spectrum (without mutations in SOX2/FOXE3) by whole-exome sequencing. Analysis of 83 known A/M factors identified pathogenic/likely pathogenic variants in PAX6, OTX2 and NDP in three patients. A novel heterozygous likely pathogenic variant in PAX6, c.767T>C, p.(Val256Ala), was identified in two brothers with bilateral microphthalmia, coloboma, primary aphakia, iris hypoplasia, sclerocornea and congenital glaucoma; the unaffected mother appears to be a mosaic carrier. While A/M has been reported as a rare feature, this is the first report of congenital primary aphakia in association with PAX6 and the identified allele represents the first variant in the PAX6 homeodomain to be associated with A/M. A novel pathogenic variant in OTX2, c.651delC, p.(Thr218Hisfs*76), in a patient with syndromic bilateral anophthalmia and a hemizygous pathogenic variant in NDP, c.293 C>T, p.(Pro98Leu), in two brothers with isolated bilateral microphthalmia and sclerocornea were also identified. Pathogenic/likely pathogenic variants were not discovered in the 25 remaining A/M cases. This study underscores the utility of whole-exome sequencing for identification of causative mutations in highly variable ocular phenotypes as well as the extreme genetic heterogeneity of A/M conditions.


Clinically Distinct Phenotypes of Canavan Disease Correlate with Residual Aspartoacylase Enzyme Activity.

  • Marisa I Mendes‎ et al.
  • Human mutation‎
  • 2017‎

We describe 14 patients with 12 novel missense mutations in ASPA, the gene causing Canavan disease (CD). We developed a method to study the effect of these 12 variants on the function of aspartoacylase-the hydrolysis of N-acetyl-l-aspartic acid (NAA) to aspartate and acetate. The wild-type ASPA open reading frame (ORF) and the ORFs containing each of the variants were transfected into HEK293 cells. Enzyme activity was determined by incubating cell lysates with NAA and measuring the released aspartic acid by LC-MS/MS. Clinical data were obtained for 11 patients by means of questionnaires. Four patients presented with a non-typical clinical picture or with the milder form of CD, whereas seven presented with severe CD. The mutations found in the mild patients corresponded to the variants with the highest residual enzyme activities, suggesting that this assay can help evaluate unknown variants found in patients with atypical presentation. We have detected a correlation between clinical presentation, enzyme activity, and genotype for CD.


Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria.

  • Benjamin Nota‎ et al.
  • American journal of human genetics‎
  • 2013‎

The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.


Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice.

  • Ranad Shaheen‎ et al.
  • American journal of human genetics‎
  • 2016‎

Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined.


Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study.

  • Angelica D'Amore‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity-there are over 80 potential disease-associated genes-and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several in silico tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy.


Genetic, clinical and biochemical characterization of a large cohort of patients with hyaline fibromatosis syndrome.

  • Claudia Cozma‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

Hyaline fibromatosis syndrome (HFS) is a rare clinical condition in which bi-allelic variants in ANTXR2 are associated with extracellular hyaline deposits. It manifests as multiple skin nodules, patchy hyperpigmentation, joint contractures and severe pain with movement. HFS shows some clinical overlap to Farber disease (FD), a recessive lysosomal storage disorder.


Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia.

  • Isaac Marin-Valencia‎ et al.
  • American journal of human genetics‎
  • 2017‎

Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.


Brief Report of Variants Detected in Hereditary Hearing Loss Cases in Iran over a 3-Year Period.

  • Niloofar Bazazzadegan‎ et al.
  • Iranian journal of public health‎
  • 2019‎

Diagnosis of hereditary hearing loss (HHL) as a heterogeneous disorder is very important especially in countries with high rates of consanguinity where the autosomal recessive pattern of inheritance is prevalent. Techniques such as next-generation sequencing, a comprehensive genetic test using targeted genomic enrichment and massively parallel sequencing (TGE + MPS), have made the diagnosis more cost-effective. The aim of this study was to determine HHL variants with comprehensive genetic testing in our country.


Bi-allelic loss of function variant in the NRCAM gene is associated with motor-predominant axonal polyneuropathy; the second report.

  • Zohreh Elahi‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

The role of biallelic variants in the NRCAM gene underlying a neurodevelopmental disorder has been defined recently. The phenotype is mainly recognized by varying severity of global developmental delay/intellectual disability, hypotonia, spasticity, and peripheral neuropathy.


SNUPN deficiency causes a recessive muscular dystrophy due to RNA mis-splicing and ECM dysregulation.

  • Marwan Nashabat‎ et al.
  • Nature communications‎
  • 2024‎

SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.


Investigation of Chromosomal Abnormalities and Microdeletion/ Microduplication(s) in Fifty Iranian Patients with Multiple Congenital Anomalies.

  • Akbar Mohammadzadeh‎ et al.
  • Cell journal‎
  • 2019‎

Major birth defects are inborn structural or functional anomalies with long-term disability and adverse impacts on individuals, families, health-care systems, and societies. Approximately 20% of birth defects are due to chromosomal and genetic conditions. Inspired by the fact that neonatal deaths are caused by birth defects in about 20 and 10% of cases in Iran and worldwide respectively, we conducted the present study to unravel the role of chromosome abnormalities, including microdeletion/microduplication(s), in multiple congenital abnormalities in a number of Iranian patients.


Phenotypic variability of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation.

  • Marianne Rohrbach‎ et al.
  • Orphanet journal of rare diseases‎
  • 2011‎

The kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA) (OMIM 225400) is a rare inheritable connective tissue disorder characterized by a deficiency of collagen lysyl hydroxylase 1 (LH1; EC 1.14.11.4) due to mutations in PLOD1. Biochemically this results in underhydroxylation of collagen lysyl residues and, hence, an abnormal pattern of lysyl pyridinoline (LP) and hydroxylysyl pyridinoline (HP) crosslinks excreted in the urine. Clinically the disorder is characterized by hypotonia and kyphoscoliosis at birth, joint hypermobility, and skin hyperelasticity and fragility. Severe hypotonia usually leads to delay in gross motor development, whereas cognitive development is reported to be normal.


Mutations in CSPP1 lead to classical Joubert syndrome.

  • Naiara Akizu‎ et al.
  • American journal of human genetics‎
  • 2014‎

Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.


Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa-like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency.

  • Hassan Vahidnezhad‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2019‎

Epidermolysis bullosa (EB), the paradigm of heritable skin fragility disorders, is associated with mutations in as many as 20 distinct genes. One of the clinical variants, recessive dystrophic EB (RDEB), demonstrates sub-lamina densa blistering accompanied by alterations in anchoring fibrils due to mutations in COL7A1. In this study, we characterized a patient with widespread connective tissue abnormalities, including skin blistering similar to that in RDEB. Whole exome sequencing, combined with genome-wide homozygosity mapping, identified a homozygous missense mutation in PLOD3 encoding lysyl hydroxylase 3 (LH3). No mutations in COL7A1, the gene previously associated with RDEB, were detected. The level of LH3 was dramatically reduced in the skin and fibroblast cultures from the patient. The blistering in the skin occurred below the lamina densa and was associated with variable density and morphology of anchoring fibrils. The level of type VII collagen expression in the skin was markedly reduced. Analysis of hydroxylysine and its glycosylated derivatives (galactosyl-hydroxylysine and glucosyl-galactosyl-hydroxylysine) revealed marked reduction in glycosylated hydroxylysine. Collectively, these findings indicate that PLOD3 mutations can result in a dystrophic EB-like phenotype in the spectrum of connective tissue disorders and add it to the list of candidate genes associated with skin fragility.


Truncating CHRNG mutations associated with interfamilial variability of the severity of the Escobar variant of multiple pterygium syndrome.

  • Ariana Kariminejad‎ et al.
  • BMC genetics‎
  • 2016‎

In humans, muscle-specific nicotinergic acetylcholine receptor (AChR) is a transmembrane protein with five different subunits, coded by CHRNA1, CHRNB, CHRND and CHRNG/CHRNE. The gamma subunit of AChR encoded by CHRNG is expressed during early foetal development, whereas in the adult, the γ subunit is replaced by a ε subunit. Mutations in the CHRNG encoding the embryonal acetylcholine receptor may cause the non-lethal Escobar variant (EVMPS) and lethal form (LMPS) of multiple pterygium syndrome. The MPS is a condition characterised by prenatal growth failure with pterygium and akinesia leading to muscle weakness and severe congenital contractures, as well as scoliosis.


Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration.

  • Ashleigh E Schaffer‎ et al.
  • Nature genetics‎
  • 2018‎

Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between β-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect β-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.


Using whole-exome sequencing to identify inherited causes of autism.

  • Timothy W Yu‎ et al.
  • Neuron‎
  • 2013‎

Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.


Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features.

  • Anide Johansen‎ et al.
  • American journal of human genetics‎
  • 2016‎

The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.


Analysis of CYP1B1 in pediatric and adult glaucoma and other ocular phenotypes.

  • Linda M Reis‎ et al.
  • Molecular vision‎
  • 2016‎

The CYP1B1 gene encodes an enzyme that is a member of the cytochrome P450 superfamily. Mutations in CYP1B1 have been mainly reported in recessive pediatric ocular phenotypes, such as primary congenital glaucoma (PCG) and congenital glaucoma with anterior segment dysgenesis (CG with ASD), with some likely pathogenic variants also identified in families affected with adult-onset primary open angle glaucoma (POAG).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: