Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis.

  • Ingo Kleiter‎ et al.
  • Brain : a journal of neurology‎
  • 2010‎

Autoreactive CD4+ T lymphocytes play a vital role in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Since the discovery of T helper 17 cells, there is an ongoing debate whether T helper 1, T helper 17 or both subtypes of T lymphocytes are important for the initiation of autoimmune neuroinflammation. We examined peripheral blood CD4+ cells from patients with active and stable relapsing-remitting multiple sclerosis, and used mice with conditional deletion or over-expression of the transforming growth factor-beta inhibitor Smad7, to delineate the role of Smad7 in T cell differentiation and autoimmune neuroinflammation. We found that Smad7 is up-regulated in peripheral CD4+ cells from patients with multiple sclerosis during relapse but not remission, and that expression of Smad7 strongly correlates with T-bet, a transcription factor defining T helper 1 responses. Concordantly, mice with transgenic over-expression of Smad7 in T cells developed an enhanced disease course during experimental autoimmune encephalomyelitis, accompanied by elevated infiltration of inflammatory cells and T helper 1 responses in the central nervous system. On the contrary, mice with a T cell-specific deletion of Smad7 had reduced disease and central nervous system inflammation. Lack of Smad7 in T cells blunted T cell proliferation and T helper 1 responses in the periphery but left T helper 17 responses unaltered. Furthermore, frequencies of regulatory T cells were increased in the central nervous system of mice with a T cell-specific deletion and reduced in mice with a T cell-specific over-expression of Smad7. Downstream effects of transforming growth factor-beta on in vitro differentiation of naïve T cells to T helper 1, T helper 17 and regulatory T cell phenotypes were enhanced in T cells lacking Smad7. Finally, Smad7 was induced during T helper 1 differentiation and inhibited during T helper 17 differentiation. Taken together, the level of Smad7 in T cells determines T helper 1 polarization and regulates inflammatory cellular responses. Since a Smad7 deletion in T cells leads to immunosuppression, Smad7 may be a potential new therapeutic target in multiple sclerosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: