Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Simultaneous inhibition of Vps34 kinase would enhance PI3Kδ inhibitor cytotoxicity in the B-cell malignancies.

  • Xiaochuan Liu‎ et al.
  • Oncotarget‎
  • 2016‎

PI3Kδ has been found to be over-expressed in B-Cell-related malignancies. Despite the clinical success of the first selective PI3Kδ inhibitor, CAL-101, inhibition of PI3Kδ itself did not show too much cytotoxic efficacy against cancer cells. One possible reason is that PI3Kδ inhibition induced autophagy that protects the cells from death. Since class III PI3K isoform PIK3C3/Vps34 participates in autophagy initiation and progression, we predicted that a PI3Kδ and Vps34 dual inhibitor might improve the anti-proliferative activity observed for PI3Kδ-targeted inhibitors. We discovered a highly potent ATP-competitive PI3Kδ/Vps34 dual inhibitor, PI3KD/V-IN-01, which displayed 10-1500 fold selectivity over other PI3K isoforms and did not inhibit any other kinases in the kinome. In cells, PI3KD/V-IN-01 showed 30-300 fold selectivity between PI3Kδ and other class I PI3K isoforms. PI3KD/V-IN-01 exhibited better anti-proliferative activity against AML, CLL and Burkitt lymphoma cell lines than known selective PI3Kδ and Vps34 inhibitors. Interestingly, we observed FLT3-ITD AML cells are more sensitive to PI3KD/V-IN-01 than the FLT3 wt expressing cells. In AML cell inoculated xenograft mouse model, PI3KD/V-IN-01 exhibited dose-dependent anti-tumor growth efficacies. These results suggest that dual inhibition of PI3Kδ and Vps34 might be a useful approach to improve the PI3Kδ inhibitor's anti-tumor efficacy.


Dual inhibition of AKT/FLT3-ITD by A674563 overcomes FLT3 ligand-induced drug resistance in FLT3-ITD positive AML.

  • Aoli Wang‎ et al.
  • Oncotarget‎
  • 2016‎

The FLT3-ITD mutation is one of the most prevalent oncogenic mutations in AML. Several FLT3 kinase inhibitors have shown impressive activity in clinical evaluation, however clinical responses are usually transient and clinical effects are rapidly lost due to drug resistance. One of the resistance mechanisms in the AML refractory patients involves FLT3-ligand induced reactivation of AKT and/or ERK signaling via FLT3 wt kinase. Via a screen of numerous AKT kinase inhibitors, we identified the well-established orally available AKT inhibitor, A674563, as a dual suppressor of AKT and FLT3-ITD. A674563 suppressed FLT3-ITD positive AML both in vitro and in vivo. More importantly, compared to other FLT3 inhibitors, A674563 is able to overcome FLT3 ligand-induced drug resistance through simultaneous inhibition of FLT3-ITD- and AKT-mediated signaling. Our findings suggest that A674563 might be a potential drug candidate for overcoming FLT3 ligand-mediated drug resistance in FLT3-ITD positive AML.


Repurposing cabozantinib to GISTs: Overcoming multiple imatinib-resistant cKIT mutations including gatekeeper and activation loop mutants in GISTs preclinical models.

  • Tingting Lu‎ et al.
  • Cancer letters‎
  • 2019‎

Despite of the great success of imatinib as the first-line treatment for GISTs, the majority of patients will develop drug-acquired resistance due to secondary mutations in the cKIT kinase. Sunitinib and regorafenib have been approved as the second and third line therapies to overcome some of these drug-resistance mutations; however, their limited clinical response, toxicity and resistance of the activation loop mutants still makes new therapies bearing different cKIT mutants activity spectrum profile highly demanded. Through a drug repositioning approach, we found that cabozantinib exhibited higher potency than imatinib against primary gain-of-function mutations of cKIT. Moreover, cabozantinib was able to overcome cKIT gatekeeper T670I mutation and the activation loop mutations that are resistant to imatinib or sunitinib. Cabozantinib demonstrated good efficacy in vitro and in vivo in the cKIT mutant-driven preclinical models of GISTs while displaying a long-lasting effect after treatment withdrawal. Furthermore, it also exhibited dose-dependent anti-proliferative efficacy in the GIST patient derived primary cells. Considering clinical safety and PK profile of cabozantinib, this report provides the basis for the future clinical applications of cabozantinib as an alternative anti-GISTs therapy in precision medicine.


Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma.

  • Hong Wu‎ et al.
  • ACS chemical biology‎
  • 2014‎

BTK is a member of the TEC family of non-receptor tyrosine kinases whose deregulation has been implicated in a variety of B-cell-related diseases. We have used structure-based drug design in conjunction with kinome profiling and cellular assays to develop a potent, selective, and irreversible BTK kinase inhibitor, QL47, which covalently modifies Cys481. QL47 inhibits BTK kinase activity with an IC50 of 7 nM, inhibits autophosphorylation of BTK on Tyr223 in cells with an EC50 of 475 nM, and inhibits phosphorylation of a downstream effector PLCγ2 (Tyr759) with an EC50 of 318 nM. In Ramos cells QL47 induces a G1 cell cycle arrest that is associated with pronounced degradation of BTK protein. QL47 inhibits the proliferation of B-cell lymphoma cancer cell lines at submicromolar concentrations.


Discovery of a highly potent kinase inhibitor capable of overcoming multiple imatinib-resistant ABL mutants for chronic myeloid leukemia (CML).

  • Tingting Lu‎ et al.
  • European journal of pharmacology‎
  • 2021‎

As the critical driving force for chronic myeloid leukemia (CML), BCR gene fused ABL kinase has been extensively explored as a validated target of drug discovery. Although imatinib has achieved tremendous success as the first-line treatment for CML, the long-term application ultimately leads to resistance, primarily via various acquired mutations occurring in the BCR-ABL kinase. Although dasatinib and nilotinib have been approved as second-line therapies that could overcome some of these mutants, the most prevalent gatekeeper T315I mutant remains unconquered. Here, we report a novel type II kinase inhibitor, CHMFL-48, that potently inhibits the wild-type BCR-ABL (wt) kinase as well as a panel of imatinib-resistant mutants, including T315I, F317L, E255K, Y253F, and M351T. CHMFL-48 displayed great inhibitory activity against ABL wt (IC50: 1 nM, 70-fold better than imatinib) and the ABL T315I mutant (IC50: 0.8 nM, over 10,000-fold better than imatinib) in a biochemical assay and potently blocked the autophosphorylation of BCR-ABL wt and BCR-ABL mutants in a cellular context, which further affected downstream signalling mediators, including signal transducer and activator of transcription 5 (STAT5) and CRK like proto-oncogene (CRKL), and led to the cell cycle progression blockage as well as apoptosis induction. CHMFL-48 also exhibited great anti-leukemic efficacies in vivo in K562 cells and p210-T315I-transformed BaF3 cell-inoculated murine models. This discovery extended the pharmacological diversity of BCR-ABL kinase inhibitors and provided more potential options for anti-CML therapies.


Atomic resolution Cryo-EM structure of human proteasome activator PA28γ.

  • Dan-Dan Chen‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

The PA28 family proteasome activators play important roles in regulating proteasome activities. Though the three paralogs (PA28α, PA28β, and PA28γ) are similar in terms of primary sequence, they show significant differences in expression pattern, cellular localization and most importantly, biological functions. While PA28αβ is responsible for promoting peptidase activity of proteasome to facilitate MHC-I antigen processing, but unable to promote protein degradation, PA28γ is well-known to not only promote peptidase activity but also proteolytic activity of proteasome. However, why this paralog has the unique function remains elusive. Previous structural studies have mainly focused on mammalian PA28α, PA28β and PA28αβ heptamers, while structural studies on mammalian PA28γ of atomic resolution are still absent to date. In the present work, we determined the Cryo-EM structure of the human PA28γ heptamer at atomic resolution, revealing interesting unique structural features that may hint our understanding the functional mechanisms of this proteasome activator.


Structure of a fungal 1,3-β-glucan synthase.

  • Chao-Ran Zhao‎ et al.
  • Science advances‎
  • 2023‎

1,3-β-Glucan serves as the primary component of the fungal cell wall and is produced by 1,3-β-glucan synthase located in the plasma membrane. This synthase is a molecular target for antifungal drugs such as echinocandins and the triterpenoid ibrexafungerp. In this study, we present the cryo-electron microscopy structure of Saccharomyces cerevisiae 1,3-β-glucan synthase (Fks1) at 2.47-Å resolution. The structure reveals a central catalytic region adopting a cellulose synthase fold with a cytosolic conserved GT-A-type glycosyltransferase domain and a closed transmembrane channel responsible for glucan transportation. Two extracellular disulfide bonds are found to be crucial for Fks1 enzymatic activity. Through structural comparative analysis with cellulose synthases and structure-guided mutagenesis studies, we gain previously unknown insights into the molecular mechanisms of fungal 1,3-β-glucan synthase.


Discovery and characterization of a novel potent type II native and mutant BCR-ABL inhibitor (CHMFL-074) for Chronic Myeloid Leukemia (CML).

  • Feiyang Liu‎ et al.
  • Oncotarget‎
  • 2016‎

BCR gene fused ABL kinase is the critical driving force for the Philadelphia Chromosome positive (Ph+) Chronic Myeloid Leukemia (CML) and has been extensively explored as a drug target. With a structure-based drug design approach we have discovered a novel inhibitor CHMFL-074, that potently inhibits both the native and a variety of clinically emerged mutants of BCR-ABL kinase. The X-ray crystal structure of CHMFL-074 in complex with ABL1 kinase (PDB ID: 5HU9) revealed a typical type II binding mode (DFG-out) but relatively rare hinge binding. Kinome wide selectivity profiling demonstrated that CHMFL-074 bore a high selectivity (S score(1) = 0.03) and potently inhibited ABL1 kinase (IC50: 24 nM) and PDGFR α/β (IC50: 71 nM and 88 nM). CHMFL-074 displayed strong anti-proliferative efficacy against BCR-ABL-driven CML cell lines such as K562 (GI50: 56 nM), MEG-01 (GI50: 18 nM) and KU812 (GI50: 57 nM). CHMFL-074 arrested cell cycle into the G0/G1 phase and induced apoptosis in the Ph+ CML cell lines. In addition, it potently inhibited the CML patient primary cell's proliferation but did not affect the normal bone marrow cells. In the CML cell K562 inoculated xenograft mouse model, oral administration of 100 mg/kg/d of CHMFL-074 achieved a tumor growth inhibition (TGI) of 65% without exhibiting apparent toxicity. As a potential drug candidate for fighting CML, CHMFL-074 is under extensive preclinical safety evaluation now.


Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

  • Li Tan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2014‎

The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.


Structural insights into drug development strategy targeting EGFR T790M/C797S.

  • Su-Jie Zhu‎ et al.
  • Oncotarget‎
  • 2018‎

Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.


Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity.

  • Hongbin He‎ et al.
  • Nature communications‎
  • 2018‎

Oridonin (Ori) is the major active ingredient of the traditional Chinese medicinal herb Rabdosia rubescens and has anti-inflammatory activity, but the target of Ori remains unknown. NLRP3 is a central component of NLRP3 inflammasome and has been involved in a wide variety of chronic inflammation-driven human diseases. Here, we show that Ori is a specific and covalent inhibitor for NLRP3 inflammasome. Ori forms a covalent bond with the cysteine 279 of NLRP3 in NACHT domain to block the interaction between NLRP3 and NEK7, thereby inhibiting NLRP3 inflammasome assembly and activation. Importantly, Ori has both preventive or therapeutic effects on mouse models of peritonitis, gouty arthritis and type 2 diabetes, via inhibition of NLRP3 activation. Our results thus identify NLRP3 as the direct target of Ori for mediating Ori's anti-inflammatory activity. Ori could serve as a lead for developing new therapeutics against NLRP3-driven diseases.


All-trans retinoic acid exerts selective anti-FLT3-ITD acute myeloid leukemia efficacy through downregulating Chk1 kinase.

  • Wenliang Wang‎ et al.
  • Cancer letters‎
  • 2020‎

All-trans retinoic acid (ATRA) is known to be a potent inhibitor of FLT3-ITD acute myeloid leukemia (AML) cells, although the exact mechanism remains unclear. In this work, we report that ATRA causes fatal mitotic catastrophe in FLT3-ITD AML cells by degrading Chk1 kinase, and therefore preventing DNA damage repair. In order to explore a further enhancement in the inhibitory effect of ATRA on FLT3-ITD AML cells, we investigated the suitability of a combination of ATRA and DNA damage drug SN38. In vitro experiments showed that this combinatorial approach effectively inhibited the proliferation of FLT3-ITD cells and induced cell apoptosis in AML. In vivo experiments confirmed that the combination could substantially improve the anti-tumor effect of SN38. Taken together, our results indicate that ATRA down-regulates Chk1 in FLT3-ITD AML cells, and the combination of ATRA and SN38 significantly improves the anti-tumor effect of either ATRA or SN38 when used alone.


Irreversible inhibition of BTK kinase by a novel highly selective inhibitor CHMFL-BTK-11 suppresses inflammatory response in rheumatoid arthritis model.

  • Hong Wu‎ et al.
  • Scientific reports‎
  • 2017‎

BTK plays a critical role in the B cell receptor mediated inflammatory signaling in the rheumatoid arthritis (RA). Through a rational design approach we discovered a highly selective and potent BTK kinase inhibitor (CHMFL-BTK-11) which exerted its inhibitory efficacy through a covalent bond with BTK Cys481. CHMFL-BTK-11 potently blocked the anti-IgM stimulated BCR signaling in the Ramos cell lines and isolated human primary B cells. It significantly inhibited the LPS stimulated TNF-α production in the human PBMC cells but only weakly affecting the normal PBMC cell proliferation. In the adjuvant-induced arthritis rat model, CHMFL-BTK-11 ameliorated the inflammatory response through blockage of proliferation of activated B cells, inhibition of the secretion of the inflammatory factors such as IgG1, IgG2, IgM, IL-6 and PMΦ phagocytosis, stimulation of secretion of IL-10. The high specificity of CHMFL-BTK-11 makes it a useful pharmacological tool to further detect BTK mediated signaling in the pathology of RA.


Discovery of a highly selective KIT kinase primary V559D mutant inhibitor for gastrointestinal stromal tumors (GISTs).

  • Kailin Yu‎ et al.
  • Oncotarget‎
  • 2017‎

KIT kinase V559D mutation is the most prevalent primary gain-of-function mutation in Gastrointestinal Stromal Tumors (GISTs). Here we reported a highly selective KIT V559D inhibitor CHMFL-KIT-031, which displayed about 10-20 fold selectivity over KIT wt in the biochemical assay (IC50: 28 nM over 168 nM; Kd: 266 nM versus 6640 nM) and in cell (EC50: 176 nM versus 2000 nM for pY703) examination. It also displayed 15∼400-fold selectivity over other primary mutants such as L576P and secondary mutants including T670I, V654A (ATP binding pocket) as well as N822K and D816V (activation loop). In addition, it exhibited a selectivity S score (1) of 0.01 among 468 kinases/mutants in the KINOMEScan™ assay. CHMFL-KIT-031 showed potent inhibitory efficacy for KIT V559D mediated signaling pathways in cell and anti-tumor activity in vivo (Tumor Growth Inhibition: 68.5%). Its superior selectivity would make it a good pharmacological tool for further dissection of KIT V559D mediated pathology in the GISTs.


Structural basis of mutant-selectivity and drug-resistance related to CO-1686.

  • Xiao-E Yan‎ et al.
  • Oncotarget‎
  • 2017‎

Non-small-cell lung cancers (NSCLCs) caused by activating mutations in the kinase domain of epidermal growth factor receptor (EGFR) initially respond to first-generation reversible drugs gefitinib and erlotinib. However, clinical efficacy is limited due to the development of drug-resistance that in more than half of the cases are driven by the secondary T790M mutation. CO-1686 is one of the third generation irreversible inhibitors that inhibits EGFR activating mutants, including those with concurrent T790M, while avoiding the off-target toxicity owing to inhibition of wild-type EGFR in treating EGFR mutation-positive NSCLCs. Despite the remarkable success, the experimentally determined structure of this agent in complex with EGFR T790M remains unknown. In this study, we determined crystal structures of EGFR T790M or L858R mutants covalently bound by CO-1686. Based on these structural data, we can explain why CO-1686 irreversibly inhibits EGFR and selectively prefers T790M, which may help improving this or similar compounds, and explain why EGFR L718Q and L844V mutations incur resistance to this agent.


A new ALK inhibitor overcomes resistance to first- and second-generation inhibitors in NSCLC.

  • Yue Lu‎ et al.
  • EMBO molecular medicine‎
  • 2022‎

More than 60% of nonsmall cell lung cancer (NSCLC) patients show a positive response to the first ALK inhibitor, crizotinib, which has been used as the standard treatment for newly diagnosed patients with ALK rearrangement. However, most patients inevitably develop crizotinib resistance due to acquired secondary mutations in the ALK kinase domain, such as the gatekeeper mutation L1196M and the most refractory mutation, G1202R. Here, we develop XMU-MP-5 as a new-generation ALK inhibitor to overcome crizotinib resistance mutations, including L1196M and G1202R. XMU-MP-5 blocks ALK signaling pathways and inhibits the proliferation of cells harboring either wild-type or mutant EML4-ALK in vitro and suppresses tumor growth in xenograft mouse models in vivo. Structural analysis provides insights into the mode of action of XMU-MP-5. In addition, XMU-MP-5 induces significant regression of lung tumors in two genetically engineered mouse (GEM) models, further demonstrating its pharmacological efficacy and potential for clinical application. These preclinical data support XMU-MP-5 as a novel selective ALK inhibitor with high potency and selectivity. XMU-MP-5 holds great promise as a new therapeutic against clinically relevant secondary ALK mutations.


Low dose of emetine as potential anti-SARS-CoV-2 virus therapy: preclinical in vitro inhibition and in vivo pharmacokinetic evidences.

  • Aoli Wang‎ et al.
  • Molecular biomedicine‎
  • 2020‎

The global pandemic of COVID-19 has attracted extensive drug searching interets for the new coronavirus SARS-CoV-2. Although currently several of clinically used "old" drugs have been repurposed to this new disease for the urgent clinical investigation, there is still great demand for more effective therapies for the anti-infections. Here we report the discovery that an "old" drug Emetine could potently inhibit SARS-CoV-2 virus replication and displayed virus entry blocking effect in Vero cells at low dose. In addition, Emetine could significantly reduce the lipopolysaccharide (LPS) induced interleukin-6 (IL-6) protein level and moderately reduce the tumor necrosis factor (TNF-α) protein level in the M1 polarized THP-1 macrophages. In vivo animal pharmacokinetics (PK) study revealed that Emetine was enriched in the lung tissue and had a long retention time (over 12 h). With 1 mg/kg single oral dose, the effective concentration of Emetine in lung was up to 1.8 μM (mice) and 1.6 μM (rats) at 12 h, which is over 200-fold higher than the EC50 of the drug. The potent in vitro antiviral replication efficacy and the high enrichment in target tissue, combining with the well documented safety profiles in human indicate that low dose of Emetine might be a potentially effective anti-SARS-CoV-2 infection therapy.


Nintedanib overcomes drug resistance from upregulation of FGFR signalling and imatinib-induced KIT mutations in gastrointestinal stromal tumours.

  • Juan Liu‎ et al.
  • Molecular oncology‎
  • 2022‎

Drug resistance remains a major challenge in the clinical treatment of gastrointestinal stromal tumours (GISTs). While acquired on-target mutations of mast/stem cell growth factor receptor (KIT) kinase is the major resistance mechanism, activation of alternative signalling pathways may also play a role. Although several second- and third-generation KIT kinase inhibitors have been developed that could overcome some of the KIT mutations conferring resistance, the low clinical responses and narrow safety window have limited their broad application. The present study revealed that nintedanib not only overcame resistance induced by a panel of KIT primary and secondary mutations, but also overcame ERK-reactivation-mediated resistance caused by the upregulation of fibroblast growth factor (FGF) activity. In preclinical models of GISTs, nintedanib significantly inhibited the proliferation of imatinib-resistant cells, including GIST-5R, GIST-T1/T670I and GIST patient-derived primary cells. In addition, it also exhibited dose-dependent inhibition of ERK phosphorylation upon FGF ligand stimulation. In vivo antitumour activity was also observed in several xenograft GIST models. Considering the well-documented safety and pharmacokinetic profiles of nintedanib, this finding provides evidence for the repurposing of nintedanib as a new therapy for the treatment of GIST patients with de novo or acquired resistance to imatinib.


Discovery of a highly selective VEGFR2 kinase inhibitor CHMFL-VEGFR2-002 as a novel anti-angiogenesis agent.

  • Zongru Jiang‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2020‎

Angiogenesis is an essential process in tumor growth, invasion and metastasis. VEGF receptor 2 (VEGFR2) inhibitors targeting tumor angiogenic pathway have been widely used in the clinical cancer treatment. However, most of currently used VEGFR2 kinase inhibitors are multi-target inhibitors which might result in target-associated side effects and therefore limited clinical toleration. Highly selective VEGFR inhibitors are still highly demanded from both basic research and clinical application point of view. Here we report the discovery and characterization of a novel VEGFR2 inhibitor (CHMFL-VEGFR2-002), which exhibited high selectivity among structurally closed kinases including PDGFRs, FGFRs, CSF1R, etc. CHMFL-VEGFR2-002 displayed potent inhibitory activity against VEGFR2 kinase in the biochemical assay (IC50 = 66 nmol/L) and VEGFR2 autophosphorylation in cells (EC50s ∼100 nmol/L) as well as potent anti-proliferation effect against VEGFR2 transformed BaF3 cells (GI50 = 150 nmol/L). In addition, CHMFL-VEGFR2-002 also displayed good anti-angiogenesis efficacy in vitro and exhibited good in vivo PK (pharmacokinetics) profile with bioavailability over 49% and anti-angiogenesis efficacy in both zebrafish and mouse models without apparent toxicity. These results suggest that CHMFL-VEGFR2-002 might be a useful research tool for dissecting new functions of VEGFR2 kinase as well as a potential anti-angiogenetic agent for the cancer therapy.


Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation.

  • Aoli Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Ibrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: