Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Chromatin Signature Identifies Monoallelic Gene Expression Across Mammalian Cell Types.

  • Anwesha Nag‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

Monoallelic expression of autosomal genes (MAE) is a widespread epigenetic phenomenon which is poorly understood, due in part to current limitations of genome-wide approaches for assessing it. Recently, we reported that a specific histone modification signature is strongly associated with MAE and demonstrated that it can serve as a proxy of MAE in human lymphoblastoid cells. Here, we use murine cells to establish that this chromatin signature is conserved between mouse and human and is associated with MAE in multiple cell types. Our analyses reveal extensive conservation in the identity of MAE genes between the two species. By analyzing MAE chromatin signature in a large number of cell and tissue types, we show that it remains consistent during terminal cell differentiation and is predominant among cell-type specific genes, suggesting a link between MAE and specification of cell identity.


Detection of Mutations in Barrett's Esophagus Before Progression to High-Grade Dysplasia or Adenocarcinoma.

  • Matthew D Stachler‎ et al.
  • Gastroenterology‎
  • 2018‎

Barrett's esophagus (BE) is the greatest risk factor for esophageal adenocarcinoma (EAC), but only a small proportion of patients with BE develop cancer. Biomarkers might be able to identify patients at highest risk of progression. We investigated genomic differences in surveillance biopsies collected from patients whose BE subsequently progressed compared to patients whose disease did not progress.


Circulating Tumor DNA Is Associated with Response and Survival in Patients with Advanced Leiomyosarcoma.

  • Laura M Madanat-Harjuoja‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2022‎

We sought to determine whether the detection of circulating tumor DNA (ctDNA) in samples of patients undergoing chemotherapy for advanced leiomyosarcoma (LMS) is associated with objective response or survival.


RNA sequencing-based screen for reactivation of silenced alleles of autosomal genes.

  • Saumya Gupta‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2022‎

In mammalian cells, maternal and paternal alleles usually have similar transcriptional activity. Epigenetic mechanisms such as X-chromosome inactivation (XCI) and imprinting were historically viewed as rare exceptions to this rule. Discovery of autosomal monoallelic autosomal expression (MAE) a decade ago revealed an additional allele-specific mode regulating thousands of mammalian genes. Despite MAE prevalence, its mechanistic basis remains unknown. Using an RNA sequencing-based screen for reactivation of silenced alleles, we identified DNA methylation as key mechanism of MAE mitotic maintenance. In contrast with the all-or-nothing allelic choice in XCI, allele-specific expression in MAE loci is tunable, with exact allelic imbalance dependent on the extent of DNA methylation. In a subset of MAE genes, allelic imbalance was insensitive to DNA demethylation, implicating additional mechanisms in MAE maintenance in these loci. Our findings identify a key mechanism of MAE maintenance and provide basis for understanding the biological role of MAE.


Genomic Evolution in a Patient With Lung Adenocarcinoma With a Germline EGFR T790M Mutation.

  • Netta Mäkinen‎ et al.
  • JTO clinical and research reports‎
  • 2021‎

A subset of lung adenocarcinomas (ADs) has been found to have somatic activating mutations in the tyrosine kinase domain of the EGFR gene, associated with response to EGFR tyrosine kinase inhibitor therapy. Rare germline mutations within this domain, including EGFR T790M, have been associated with genetic susceptibility to lung ADs. Using high-throughput sequencing, we elucidate the genomic evolution in tissues from a patient with lung AD carrying a germline EGFR T790M mutation.


Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group.

  • David S Shulman‎ et al.
  • British journal of cancer‎
  • 2018‎

New prognostic markers are needed to identify patients with Ewing sarcoma (EWS) and osteosarcoma unlikely to benefit from standard therapy. We describe the incidence and association with outcome of circulating tumour DNA (ctDNA) using next-generation sequencing (NGS) assays.


Genetic and transcriptional evolution alters cancer cell line drug response.

  • Uri Ben-David‎ et al.
  • Nature‎
  • 2018‎

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.


Blood collection in cell-stabilizing tubes does not impact germline DNA quality for pediatric patients.

  • Bruce M Wollison‎ et al.
  • PloS one‎
  • 2017‎

Liquid biopsy technologies allow non-invasive tumor profiling for patients with solid tumor malignancies by sequencing circulating tumor DNA. These studies may be useful in risk-stratification, monitoring for relapse, and understanding tumor evolution. The quality of DNA obtained for these studies is improved when blood samples are collected in tubes that stabilizing white blood cells (WBC). However, ongoing germline research in pediatric oncology generally requires obtaining blood samples in EDTA tubes, which do not contain a WBC-stabilizing preservative. In this study, we explored whether blood samples collected in WBC-stabilizing tubes could be used for both liquid biopsy and germline studies simultaneously, minimizing blood collection volumes for pediatric patients.


Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing.

  • Laura E MacConaill‎ et al.
  • BMC genomics‎
  • 2018‎

Sample index cross-talk can result in false positive calls when massively parallel sequencing (MPS) is used for sensitive applications such as low-frequency somatic variant discovery, ancient DNA investigations, microbial detection in human samples, or circulating cell-free tumor DNA (ctDNA) variant detection. Therefore, the limit-of-detection of an MPS assay is directly related to the degree of index cross-talk.


Identification and characterization of in vitro expanded hematopoietic stem cells.

  • James L C Che‎ et al.
  • EMBO reports‎
  • 2022‎

Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.


Physioxia improves the selectivity of hematopoietic stem cell expansion cultures.

  • Kyomi J Igarashi‎ et al.
  • Blood advances‎
  • 2023‎

Hematopoietic stem cells (HSCs) are a rare type of hematopoietic cell that can entirely reconstitute the blood and immune system after transplantation. Allogeneic HSC transplantation (HSCT) is used clinically as a curative therapy for a range of hematolymphoid diseases; however, it remains a high-risk therapy because of its potential side effects, including poor graft function and graft-versus-host disease (GVHD). Ex vivo HSC expansion has been suggested as an approach to improve hematopoietic reconstitution in low-cell dose grafts. Here, we demonstrate that the selectivity of polyvinyl alcohol (PVA)-based mouse HSC cultures can be improved using physioxic culture conditions. Single-cell transcriptomic analysis helped confirm the inhibition of lineage-committed progenitor cells in physioxic cultures. Long-term physioxic expansion also afforded culture-based ex vivo HSC selection from whole bone marrow, spleen, and embryonic tissues. Furthermore, we provide evidence that HSC-selective ex vivo cultures deplete GVHD-causing T cells and that this approach can be combined with genotoxic-free antibody-based conditioning HSCT approaches. Our results offer a simple approach to improve PVA-based HSC cultures and the underlying molecular phenotype, and highlight the potential translational implications of selective HSC expansion systems for allogeneic HSCT.


Chromatin signature of widespread monoallelic expression.

  • Anwesha Nag‎ et al.
  • eLife‎
  • 2013‎

In mammals, numerous autosomal genes are subject to mitotically stable monoallelic expression (MAE), including genes that play critical roles in a variety of human diseases. Due to challenges posed by the clonal nature of MAE, very little is known about its regulation; in particular, no molecular features have been specifically linked to MAE. In this study, we report an approach that distinguishes MAE genes in human cells with great accuracy: a chromatin signature consisting of chromatin marks associated with active transcription (H3K36me3) and silencing (H3K27me3) simultaneously occurring in the gene body. The MAE signature is present in ∼20% of ubiquitously expressed genes and over 30% of tissue-specific genes across cell types. Notably, it is enriched among key developmental genes that have bivalent chromatin structure in pluripotent cells. Our results open a new approach to the study of MAE that is independent of polymorphisms, and suggest that MAE is linked to cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.01256.001.


Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations.

  • Anika Bongaarts‎ et al.
  • Oncotarget‎
  • 2017‎

Subependymal giant cell astrocytomas (SEGAs) are rare, low-grade glioneuronal brain tumors that occur almost exclusively in patients with tuberous sclerosis complex (TSC). Though histologically benign, SEGAs can lead to serious neurological complications, including hydrocephalus, intractable seizures and death. Previous studies in a limited number of SEGAs have provided evidence for a biallelic two-hit inactivation of either TSC1 or TSC2, resulting in constitutive activation of the mechanistic target of rapamycin complex 1 pathway. The activating BRAF V600E mutation is a common genetic alteration in low grade gliomas and glioneuronal tumors, and has been reported in SEGAs as well. In the present study, we assessed the prevalence of the BRAF V600E mutation in a large cohort of TSC related SEGAs (n=58 patients including 56 with clinical TSC) and found no evidence of either BRAF V600E or other mutations in BRAF. To confirm that these SEGAs fit the classic model of two hit TSC1 or TSC2 inactivation, we also performed massively parallel sequencing of these loci. Nineteen (19) of 34 (56%) samples had mutations in TSC2, 10 (29%) had mutations in TSC1, while 5 (15%) had no mutation identified in TSC1/TSC2. The majority of these samples had loss of heterozygosity in the same gene in which the mutation was identified. These results significantly extend previous studies, and in agreement with the Knudson two hit mechanism indicate that biallelic alterations in TSC2 and less commonly, TSC1 are consistently seen in SEGAs.


Generation of Functional Organs Using a Cell-Competitive Niche in Intra- and Inter-species Rodent Chimeras.

  • Toshiya Nishimura‎ et al.
  • Cell stem cell‎
  • 2021‎

Interspecies organ generation via blastocyst complementation has succeeded in rodents, but not yet in evolutionally more distant species. Early developmental arrest hinders the formation of highly chimeric fetuses. We demonstrate that the deletion of insulin-like growth factor 1 receptor (Igf1r) in mouse embryos creates a permissive "cell-competitive niche" in several organs, significantly augmenting both mouse intraspecies and mouse/rat interspecies donor chimerism that continuously increases from embryonic day 11 onward, sometimes even taking over entire organs within intraspecies chimeras. Since Igf1r deletion allows the evasion of early developmental arrest, interspecies fetuses with high levels of organ chimerism can be generated via blastocyst complementation. This observation should facilitate donor cell contribution to host tissues, resulting in whole-organ generation via blastocyst complementation across wide evolutionary distances.


Dissection of PIK3CA Aberration for Cervical Adenocarcinoma Outcomes.

  • Tony K H Chung‎ et al.
  • Cancers‎
  • 2021‎

Personalized treatment of genetically stratified subgroups has the potential to improve outcomes in many malignant tumors. This study distills clinically meaningful prognostic/predictive genomic marker for cervical adenocarcinoma using signature genomic aberrations and single-point nonsynonymous mutation-specific droplet digital PCR (ddPCR). Mutations in PIK3CA E542K, E545K, or H1047R were detected in 41.7% of tumors. PIK3CA mutation detected in the patient's circulating DNA collected before treatment or during follow-up was significantly associated with decreased progression-free survival or overall survival. PIK3CA mutation in the circulating DNA during follow-up after treatment predicted recurrence with 100% sensitivity and 64.29% specificity. It is the first indication of the predictive power of PIK3CA mutations in cervical adenocarcinoma. The work contributes to the development of liquid biopsies for follow up surveillance and a possibility of tailoring management of this particular women's cancer.


iPSC-derived hypoimmunogenic tissue resident memory T cells mediate robust anti-tumor activity against cervical cancer.

  • Yoshiki Furukawa‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Functionally rejuvenated human papilloma virus-specific cytotoxic T lymphocytes (HPV-rejTs) generated from induced pluripotent stem cells robustly suppress cervical cancer. However, autologous rejT generation is time consuming, leading to difficulty in treating patients with advanced cancer. Although use of allogeneic HPV-rejTs can obviate this, the major obstacle is rejection by the patient immune system. To overcome this, we develop HLA-A24&-E dual integrated HPV-rejTs after erasing HLA class I antigens. These rejTs effectively suppress recipient immune rejection while maintaining more robust cytotoxicity than original cytotoxic T lymphocytes. Single-cell RNA sequencing performed to gain deeper insights reveal that HPV-rejTs are highly enriched with tissue resident memory T cells, which enhance cytotoxicity against cervical cancer through TGFβR signaling, with increased CD103 expression. Genes associated with the immunological synapse also are upregulated, suggesting that these features promote stronger activation of T cell receptor (TCR) and increased TCR-mediated target cell death. We believe that our work will contribute to feasible "off-the-shelf" T cell therapy with robust anti-cervical cancer effects.


Adverse prognostic impact of the loss of STAG2 protein expression in patients with newly diagnosed localised Ewing sarcoma: A report from the Children's Oncology Group.

  • David S Shulman‎ et al.
  • British journal of cancer‎
  • 2022‎

Ewing sarcoma (EWS) is an aggressive sarcoma with no validated molecular biomarkers. We aimed to determine the frequency of STAG2 protein loss by immunohistochemistry (IHC) and whether loss of expression is associated with outcome.


Somatic mutation but not aneuploidy differentiates lung cancer in never-smokers and smokers.

  • Sitapriya Moorthi‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Lung cancer in never-smokers disproportionately affects older women. To understand the mutational landscape of this cohort, we performed detailed genome characterization of 73 lung adenocarcinomas from participants of the Women’s Health Initiative (WHI). We find enrichment of EGFR mutations in never-/light-smokers and KRAS mutations in heavy smokers as expected, but we also show that the specific variants of these genes differ by smoking status, with important therapeutic implications. Mutational signature analysis revealed signatures of clock, APOBEC, and DNA repair deficiency in never-/light-smokers; however, the mutational load of these signatures did not differ significantly from those found in smokers. Last, tumors from both smokers and never-/light-smokers shared copy number subtypes, with no significant differences in aneuploidy. Thus, the genomic landscape of lung cancer in never-/light-smokers and smokers is predominantly differentiated by somatic mutations and not copy number alterations.


A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes.

  • Michelle A Carmell‎ et al.
  • eLife‎
  • 2016‎

The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya - either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome.


Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis.

  • Virginia Savova‎ et al.
  • Developmental biology‎
  • 2017‎

We characterize the genetic diversity of Xenopus laevis strains using RNA-seq data and allele-specific analysis. This data provides a catalogue of coding variation, which can be used for improving the genomic sequence, as well as for better sequence alignment, probe design, and proteomic analysis. In addition, we paint a broad picture of the genetic landscape of the species by functionally annotating different classes of mutations with a well-established prediction tool (PolyPhen-2). Further, we specifically compare the variation in the progeny of four crosses: inbred genomic (J)-strain, outbred albino (B)-strain, and two hybrid crosses of J and B strains. We identify a subset of mutations specific to the B strain, which allows us to investigate the selection pressures affecting duplicated genes in this allotetraploid. From these crosses we find the ratio of non-synonymous to synonymous mutations is lower in duplicated genes, which suggests that they are under greater purifying selection. Surprisingly, we also find that function-altering ("damaging") mutations constitute a greater fraction of the non-synonymous variants in this group, which suggests a role for subfunctionalization in coding variation affecting duplicated genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: