Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Ubiquitous expression of the rtTA2S-M2 inducible system in transgenic mice driven by the human hnRNPA2B1/CBX3 CpG island.

  • Eleni Z Katsantoni‎ et al.
  • BMC developmental biology‎
  • 2007‎

A sensitive, ubiquitously expressed tetracycline inducible system would be a valuable tool in mouse transgenesis. However, this has been difficult to obtain due to position effects observed at different chromosomal sites of transgene integration, which negatively affect expression in many tissues. The aim of this study was to test the utility of a mammalian methylation-free CpG island to drive ubiquitous expression of the sensitive doxycycline (Dox) inducible rtTA2S-M2 Tet-transactivator in transgenic mice.


Potential Influence of Endothelial Adsorption on the Delayed Time to Maximum Concentration of Biopharmaceuticals.

  • Joannes A A Reijers‎ et al.
  • European journal of drug metabolism and pharmacokinetics‎
  • 2018‎

Maximum plasma concentration of biopharmaceuticals sometimes occurs long after completion of intravenous infusion. The objective of this research was to study the hypothetical adsorption of biopharmaceuticals to endothelium and infusion material, which may theoretically explain this phenomenon.


Host genetics and tumor environment determine the functional impact of neutrophils in mouse tumor models.

  • Marit van Elsas‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Neutrophils have been reported to have protumor, antitumor or neutral effects in cancer progression. The underlying causes for this functional variability are not clear.


Effect of hydroxychloroquine on the cardiac ventricular repolarization: A randomized clinical trial.

  • Boukje C Eveleens Maarse‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

Hydroxychloroquine has been suggested as possible treatment for severe acute respiratory syndrome-coronavirus-2. Studies reported an increased risk of QTcF-prolongation after treatment with hydroxychloroquine. The aim of this study was to analyse the concentration-dependent effects of hydroxychloroquine on the ventricular repolarization, including QTcF-duration and T-wave morphology.


Clinical, Cellular, and Molecular Effects of Corticosteroids on the Response to Intradermal Lipopolysaccharide Administration in Healthy Volunteers.

  • Thomas P Buters‎ et al.
  • Clinical pharmacology and therapeutics‎
  • 2022‎

The intradermal lipopolysaccharide (LPS) challenge in healthy volunteers has proven to be a valuable tool to study local inflammation in vivo. In the current study the inhibitory effects of oral and topical corticosteroid treatment on intradermal LPS responses were evaluated to benchmark the challenge for future investigational drugs. Twenty-four healthy male volunteers received a two-and-a-half-day twice daily (b.i.d.) pretreatment with topical clobetasol propionate 0.05% and six healthy volunteers received a two-and-a-half-day b.i.d. pretreatment with oral prednisolone at 0.25 mg/kg body weight per administration. Participants received one injection regimen of either 0, 2, or 4 intradermal LPS injections (5 ng LPS in 50 µL 0.9% sodium chloride solution). The LPS response was evaluated by noninvasive (perfusion, skin temperature, and erythema) and invasive assessments (cellular and cytokine responses) in suction blister exudate. Both corticosteroids significantly suppressed the clinical inflammatory response (erythema P = 0.0001 for clobetasol and P = 0.0016 for prednisolone; heat P = 0.0245 for clobetasol, perfusion P < 0.0001 for clobetasol and P = 0.0036 for prednisolone). Clobetasol also significantly reduced the number of monocytes subsets, dendritic cells, natural killer cells, and T cells in blister exudate. A similar effect was observed for prednisolone. No relevant corticosteroid effects were observed on the cytokine response to LPS. We successfully demonstrated that the anti-inflammatory effects of corticosteroids can be detected using our intradermal LPS challenge model, validating it for evaluation of future investigational drugs, as an initial assessment of the anti-inflammatory effects of such compounds in a minimally invasive manner.


A system pharmacology Boolean network model for the TLR4-mediated inflammatory response in early sepsis.

  • Feiyan Liu‎ et al.
  • Journal of pharmacokinetics and pharmacodynamics‎
  • 2022‎

Sepsis is a life-threatening condition driven by the dysregulation of the host immune response to an infection. The complex and interacting mechanisms underlying sepsis remain not fully understood. By integrating prior knowledge from literature using mathematical modelling techniques, we aimed to obtain a deeper mechanistic insight into sepsis pathogenesis and to evaluate promising novel therapeutic targets, with a focus on Toll-like receptor 4 (TLR4)-mediated pathways. A Boolean network of regulatory relationships was developed for key immune components associated with sepsis pathogenesis after TLR4 activation. Perturbation analyses were conducted to identify therapeutic targets associated with organ dysfunction or antibacterial activity. The developed model consisted of 42 nodes and 183 interactions. Perturbation analyses suggest that over-expression of tumour necrosis factor alpha (TNF-α) or inhibition of soluble receptor sTNF-R, tissue factor, and inflammatory cytokines (IFN-γ, IL-12) may lead to a reduced activation of organ dysfunction related endpoints. Over-expression of complement factor C3b and C5b led to an increase in the bacterial clearance related endpoint. We identified that combinatory blockade of IFN-γ and IL-10 may reduce the risk of organ dysfunction. Finally, we found that combining antibiotic treatment with IL-1β targeted therapy may have the potential to decrease thrombosis. In summary, we demonstrate how existing biological knowledge can be effectively integrated using Boolean network analysis for hypothesis generation of potential treatment strategies and characterization of biomarker responses associated with the early inflammatory response in sepsis.


Whole blood assay as a model for in vitro evaluation of inflammasome activation and subsequent caspase-mediated interleukin-1 beta release.

  • Thi Anh Thu Tran‎ et al.
  • PloS one‎
  • 2019‎

Processing of pro-interleukin (IL)-1β and IL-18 is regulated by multiprotein complexes, known as inflammasomes. Inflammasome activation results in generation of bioactive IL-1β and IL-18, which can exert potent pro-inflammatory effects. Our aim was to develop a whole blood-based assay to study the inflammasome in vitro and that also can be used as an assay in clinical studies. We show whole blood is a suitable milieu to study inflammasome activation in primary human monocytes. We demonstrated that unprocessed human blood cells can be stimulated to activate the inflammasome by the addition of adenosine 5'-triphosphate (ATP) within a narrow timeframe following lipopolysaccharide (LPS) priming. Stimulation with LPS resulted in IL-1β release; however, addition of ATP is necessary for "full-blown" inflammasome stimulation resulting in high IL-1β and IL-18 release. Intracellular cytokine staining demonstrated monocytes are the major producers of IL-1β in human whole blood cultures, and this was associated with activation of caspase-1/4/5, as detected by a fluorescently labelled caspase-1/4/5 probe. By applying caspase inhibitors, we show that both the canonical inflammasome pathway (via caspase-1) as well as the non-canonical inflammasome pathway (via caspases-4 and 5) can be studied using this whole blood-based model.


Stimulation of the PD-1 Pathway Decreases Atherosclerotic Lesion Development in Ldlr Deficient Mice.

  • Hendrika W Grievink‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Aim: Signaling through the coinhibitory programmed death (PD)-1/PD-L1 pathway regulates T cell responses and can inhibit ongoing immune responses. Inflammation is a key process in the development of atherosclerosis, the underlying cause for the majority of cardiovascular diseases. Dampening the excessive immune response that occurs during atherosclerosis progression by promoting PD-1/PD-L1 signaling may have a high therapeutic potential to limit disease burden. In this study we therefore aimed to assess whether an agonistic PD-1 antibody can diminish atherosclerosis development. Methods and Results: Ldlr-/- mice were fed a western-type diet (WTD) while receiving 100 μg of an agonistic PD-1 antibody or control vehicle twice a week. Stimulation of the PD-1 pathway delayed the WTD-induced monocyte increase in the circulation up to 3 weeks and reduced T cell activation and proliferation. CD4+ T cell numbers in the atherosclerotic plaque were reduced upon PD-1 treatment. More specifically, we observed a 23% decrease in atherogenic IFNγ-producing splenic CD4+ T cells and a 20% decrease in cytotoxic CD8+ T cells, whereas atheroprotective IL-10 producing CD4+ T cells were increased with 47%. Furthermore, we found an increase in regulatory B cells, B1 cells and associated atheroprotective circulating oxLDL-specific IgM levels in agonistic PD-1-treated mice. This dampened immune activation following agonistic PD-1 treatment resulted in reduced atherosclerosis development (p < 0.05). Conclusions: Our data show that stimulation of the coinhibitory PD-1 pathway inhibits atherosclerosis development by modulation of T- and B cell responses. These data support stimulation of coinhibitory pathways as a potential therapeutic strategy to combat atherosclerosis.


A Randomized First-in-Human Study With UB-312, a UBITh® α-Synuclein Peptide Vaccine.

  • Hui Jing Yu‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2022‎

α-Synuclein (αSyn) is believed to play a central role in Parkinson's disease (PD) neuropathology and is considered a target for disease modification. UB-312 is a synthetic αSyn peptide conjugated to a T helper peptide and is expected to induce antibodies specifically against oligomeric and fibrillar αSyn, making UB-312 a potential immunotherapeutic for synucleopathies.


Immune Monitoring of Mycophenolate Mofetil Activity in Healthy Volunteers Using Ex Vivo T Cell Function Assays.

  • Aliede E In 't Veld‎ et al.
  • Pharmaceutics‎
  • 2023‎

Mycophenolate mofetil (MMF) is part of the standard immunosuppressive treatment after transplantation and usually given as "one-dose-fits-all" together with a calcineurin inhibitor (CNI). Although drug concentrations are frequently monitored, there is still a group of patients who experience side effects related to excessive or insufficient immune suppression. We therefore aimed to identify biomarkers that reflect the overall immune status of the patient and might support individualized dosing. We previously studied immune biomarkers for CNIs and aimed to investigate whether these are also suitable to monitor MMF activity. Healthy volunteers received a single dose of MMF or placebo, after which IMPDH enzymatic activity, T cell proliferation, and cytokine production were measured and compared to MPA (MMF's active metabolite) concentration in three different matrices (plasma, peripheral blood mononuclear cells, and T cells). MPA concentrations in T cells exceeded those in PBMCs, but all intracellular concentrations correlated strongly with plasma concentrations. At clinically relevant MPA concentrations, IL-2 and IFN-γ production was mildly suppressed, while MPA T cell proliferation was strongly inhibited. Based on these data, it is expected that monitoring of T cell proliferation in MMF-treated transplantation patients may be a valid strategy to avoid excessive immune suppression.


Clinical translation of anti-inflammatory effects of Prevotella histicola in Th1, Th2, and Th17 inflammation.

  • Andrea Itano‎ et al.
  • Frontiers in medicine‎
  • 2023‎

EDP1815 is a non-colonizing pharmaceutical preparation of a single stain of Prevotella histicola isolated from the duodenum of a human donor. We report here preclinical and clinical studies showing that the action of EDP1815, an orally delivered and gut restricted single strain of commensal bacteria can regulate inflammatory responses throughout the body.


Clinical Evaluation of Humira® Biosimilar ONS-3010 in Healthy Volunteers: Focus on Pharmacokinetics and Pharmacodynamics.

  • Marlous R Dillingh‎ et al.
  • Frontiers in immunology‎
  • 2016‎

ONS-3010 is being developed by Oncobiologics Inc. (Cranbury, NJ, USA) as a biosimilar of Humira®. This randomized, double blind, single-center phase I study (EudraCT registration # 2013-003551-38) was performed to demonstrate pharmacokinetic (PK) biosimilarity between two reference products (Humira® EU and US) and ONS-3010 in healthy volunteers, and to compare the safety and immunogenicity profiles. In addition, the intended pharmacological activity was assessed and compared by application of a whole blood challenge. Hundred ninety-eight healthy volunteers received a single 40 mg subcutaneous dose of ONS-3010, Humira® EU, or US. The pharmacodynamic effects were assessed by lipopolysaccharide (LPS)/aluminum hydroxide whole blood challenges (n = 36; n = 12 per treatment arm; male:female, 1:1). Equivalence was demonstrated on the PK endpoints (AUC0-inf, Cmax, and AUC0-last) based on bounds of 80-125% for the ratio of the geometric means (ONS-3010/Humira®). The immunogenicity profiles were comparable between treatment groups, and there were no indications for differences in routine safety parameters. Administration of adalimumab resulted in the observation of dramatically reduced tumor necrosis factor-α (TNFα) levels upon stimulation with LPS/aluminum hydroxide (>99%), with no differences between the three treatment groups in terms of magnitude or duration. Adalimumab also resulted in a reduction of LPS/aluminum hydroxide-induced interleukin (IL)-8 release (maximally 30%), suggested to have a causal relationship with the anti-TNFα treatment. LPS/aluminum hydroxide-induced release of IL-1β and IL-6 was not inhibited by anti-TNFα treatment. Taken together, these data are promising for the further clinical development of ONS-3010, demonstrate the relevance of the LPS/aluminum challenge to monitor Humira® effects, and emphasize the value of whole blood challenges for monitoring of proximal drug effects in healthy volunteers, and potentially in the target population.


OX40L Inhibition Suppresses KLH-driven Immune Responses in Healthy Volunteers: A Randomized Controlled Trial Demonstrating Proof-of-Pharmacology for KY1005.

  • Mahdi Saghari‎ et al.
  • Clinical pharmacology and therapeutics‎
  • 2022‎

The safety, tolerability, immunogenicity, and pharmacokinetic (PK) profile of an anti-OX40L monoclonal antibody (KY1005, currently amlitelimab) were evaluated. Pharmacodynamic (PD) effects were explored using keyhole limpet hemocyanin (KLH) and tetanus toxoid (TT) immunizations. Sixty-four healthy male subjects (26.5 ± 6.0 years) were randomized to single doses of 0.006, 0.018, or 0.05 mg/kg, or multiple doses of 0.15, 0.45, 1.35, 4, or 12 mg/kg KY1005, or placebo (6:2). Serum KY1005 concentrations were measured. Antibody responses upon KLH and TT immunizations and skin response upon intradermal KLH administration were performed. PD data were analyzed using repeated measures analysis of covariances (ANCOVAs) and post hoc exposure-response modeling. No serious adverse events occurred and all adverse events were temporary and of mild or moderate severity. A nonlinear increase in mean serum KY1005 concentrations was observed (median time to maximum concentration (Tmax ) ~ 4 hours, geometric mean terminal half-life (t½) ~ 24 days). Cutaneous blood perfusion (estimated difference (ED) -13.4 arbitrary unit (AU), 95% confidence interval (CI) -23.0 AU to -3.8 AU) and erythema quantified as average redness (ED -0.23 AU, 95% CI -0.35 AU to -0.11 AU) decreased after KY1005 treatment at doses of 0.45 mg/kg and above. Exposure-response analysis displayed a statistically significant treatment effect on anti-KLH antibody titers (IgG maximum effect (Emax ) -0.58 AU, 95% CI -1.10 AU to -0.06 AU) and skin response (erythema Emax -0.20 AU, 95% CI -0.29 AU to -0.11 AU). Administration of KY1005 demonstrated an acceptable safety and tolerability profile and PK analyses displayed a nonlinear profile of KY1005. Despite the observed variability, skin challenge response after KY1005 treatment indicated pharmacological activity of KY1005. Therefore, KY1005 shows potential as a novel pharmacological treatment in immune-mediated disorders.


Modelling inflammatory biomarker dynamics in a human lipopolysaccharide (LPS) challenge study using delay differential equations.

  • Feiyan Liu‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

Clinical studies in healthy volunteers challenged with lipopolysaccharide (LPS), a constituent of the cell wall of Gram-negative bacteria, represent a key model to characterize the Toll-like receptor 4 (TLR4)-mediated inflammatory response. Here, we developed a mathematical modelling framework to quantitatively characterize the dynamics and inter-individual variability of multiple inflammatory biomarkers in healthy volunteer LPS challenge studies. Data from previously reported LPS challenge studies were used, which included individual-level time-course data for tumour necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive protein (CRP). A one-compartment model with first-order elimination was used to capture the LPS kinetics. The relationships between LPS and inflammatory markers was characterized using indirect response (IDR) models. Delay differential equations were applied to quantify the delays in biomarker response profiles. For LPS kinetics, our estimates of clearance and volume of distribution were 35.7 L h-1 and 6.35 L, respectively. Our model adequately captured the dynamics of multiple inflammatory biomarkers. The time delay for the secretion of TNF-α, IL-6 and IL-8 were estimated to be 0.924, 1.46 and 1.48 h, respectively. A second IDR model was used to describe the induced changes of CRP in relation to IL-6, with a delayed time of 4.2 h. The quantitative models developed in this study can be used to inform design of clinical LPS challenge studies and may help to translate preclinical LPS challenge studies to humans.


Identification of peripheral vascular function measures and circulating biomarkers of mitochondrial function in patients with mitochondrial disease.

  • Sebastiaan J W van Kraaij‎ et al.
  • Clinical and translational science‎
  • 2023‎

The development of pharmacological therapies for mitochondrial diseases is hampered by the lack of tissue-level and circulating biomarkers reflecting effects of compounds on endothelial and mitochondrial function. This phase 0 study aimed to identify biomarkers differentiating between patients with mitochondrial disease and healthy volunteers (HVs). In this cross-sectional case-control study, eight participants with mitochondrial disease and eight HVs matched on age, sex, and body mass index underwent study assessments consisting of blood collection for evaluation of plasma and serum biomarkers, mitochondrial function in peripheral blood mononuclear cells (PBMCs), and an array of imaging methods for assessment of (micro)circulation. Plasma biomarkers GDF-15, IL-6, NT-proBNP, and cTNI were significantly elevated in patients compared to HVs, as were several clinical chemistry and hematology markers. No differences between groups were found for mitochondrial membrane potential, mitochondrial reactive oxygen production, oxygen consumption rate, or extracellular acidification rate in PBMCs. Imaging revealed significantly higher nicotinamide-adenine-dinucleotide-hydrogen (NADH) content in skin as well as reduced passive leg movement-induced hyperemia in patients. This study confirmed results of earlier studies regarding plasma biomarkers in mitochondrial disease and identified several imaging techniques that could detect functional differences at the tissue level between participants with mitochondrial disease and HVs. However, assays of mitochondrial function in PBMCs did not show differences between participants with mitochondrial disease and HVs, possibly reflecting compensatory mechanisms and heterogeneity in mutational load. In future clinical trials, using a mix of imaging and blood-based biomarkers may be advisable, as well as combining these with an in vivo challenge to disturb homeostasis.


Elevated expression of phospholipid transfer protein in bone marrow derived cells causes atherosclerosis.

  • Rien van Haperen‎ et al.
  • PloS one‎
  • 2008‎

Phospholipid transfer protein (PLTP) is expressed by various cell types. In plasma, it is associated with high density lipoproteins (HDL). Elevated levels of PLTP in transgenic mice result in decreased HDL and increased atherosclerosis. PLTP is present in human atherosclerotic lesions, where it seems to be macrophage derived. The aim of the present study is to evaluate the atherogenic potential of macrophage derived PLTP.


Immunomonitoring of Tacrolimus in Healthy Volunteers: The First Step from PK- to PD-Based Therapeutic Drug Monitoring?

  • Aliede E In 't Veld‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Therapeutic drug monitoring is routinely performed to maintain optimal tacrolimus concentrations in kidney transplant recipients. Nonetheless, toxicity and rejection still occur within an acceptable concentration-range. To have a better understanding of the relationship between tacrolimus dose, tacrolimus concentration, and its effect on the target cell, we developed functional immune tests for the quantification of the tacrolimus effect. Twelve healthy volunteers received a single dose of tacrolimus, after which intracellular and whole blood tacrolimus concentrations were measured and were related to T cell functionality. A significant correlation was found between tacrolimus concentrations in T cells and whole blood concentrations (r = 0.71, p = 0.009), while no correlation was found between tacrolimus concentrations in peripheral blood mononuclear cells (PBMCs) and whole blood (r = 0.35, p = 0.27). Phytohemagglutinin (PHA) induced the production of IL-2 and IFNγ, as well as the inhibition of CD71 and CD154 expression on T cells at 1.5 h post-dose, when maximum tacrolimus levels were observed. Moreover, the in vitro tacrolimus effect of the mentioned markers corresponded with the ex vivo effect after dosing. In conclusion, our results showed that intracellular tacrolimus concentrations mimic whole blood concentrations, and that PHA-induced cytokine production (IL-2 and IFNγ) and activation marker expression (CD71 and CD154) are suitable readout measures to measure the immunosuppressive effect of tacrolimus on the T cell.


Intradermal lipopolysaccharide challenge as an acute in vivo inflammatory model in healthy volunteers.

  • Thomas P Buters‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

Whereas intravenous administration of Toll-like receptor 4 ligand lipopolysaccharide (LPS) to human volunteers is frequently used in clinical pharmacology studies, systemic use of LPS has practical limitations. We aimed to characterize the intradermal LPS response in healthy volunteers, and as such qualify the method as local inflammation model for clinical pharmacology studies.


Immunosuppression by hydroxychloroquine: mechanistic proof in in vitro experiments but limited systemic activity in a randomized placebo-controlled clinical pharmacology study.

  • Aliede E In 't Veld‎ et al.
  • Immunologic research‎
  • 2023‎

Based on its wide range of immunosuppressive properties, hydroxychloroquine (HCQ) is used for the treatment of several autoimmune diseases. Limited literature is available on the relationship between HCQ concentration and its immunosuppressive effect. To gain insight in this relationship, we performed in vitro experiments in human PBMCs and explored the effect of HCQ on T and B cell proliferation and Toll-like receptor (TLR)3/TLR7/TLR9/RIG-I-induced cytokine production. In a placebo-controlled clinical study, these same endpoints were evaluated in healthy volunteers that were treated with a cumulative dose of 2400 mg HCQ over 5 days. In vitro, HCQ inhibited TLR responses with IC50s > 100 ng/mL and reaching 100% inhibition. In the clinical study, maximal HCQ plasma concentrations ranged from 75 to 200 ng/mL. No ex vivo HCQ effects were found on RIG-I-mediated cytokine release, but there was significant suppression of TLR7 responses and mild suppression of TLR3 and TLR9 responses. Moreover, HCQ treatment did not affect B cell and T cell proliferation. These investigations show that HCQ has clear immunosuppressive effects on human PBMCs, but the effective concentrations exceed the circulating HCQ concentrations under conventional clinical use. Of note, based on HCQ's physicochemical properties, tissue drug concentrations may be higher, potentially resulting in significant local immunosuppression. This trial is registered in the International Clinical Trials Registry Platform (ICTRP) under study number NL8726.


MTORC1 signaling as a biomarker in major depressive disorder and its pharmacological modulation by novel rapid-acting antidepressants.

  • Tomasz Cholewinski‎ et al.
  • Therapeutic advances in psychopharmacology‎
  • 2021‎

Major depressive disorder (MDD) is a multifactorial psychiatric disorder with obscure pathophysiology. A biomarker-based approach in combination with standardized interview-based instruments is needed to identify MDD subtypes and novel therapeutic targets. Recent findings support the impairment of the mammalian target of rapamycin complex 1 (mTORC1) in MDD. No well-established biomarkers of mTORC1 disease- and treatment-modulated activity are currently available for use in early phase antidepressant drug (AD) development. This review aims to summarize biomarkers of mTORC1 activity in MDD and to suggest how these could be implemented in future early clinical trials on mTORC1 modulating ADs. Therefore, a PubMed-based narrative literature review of the mTORC1 involvement in MDD was performed. We have summarized recent pre-clinical and clinical findings linking the MDD to the impaired activity of several key biomarkers related to mTORC1. Also, cases of restoration of these impairments by classical ADs and novel fast-acting investigational ADs are summarized. The presented biomarkers may be used to monitor pharmacological effects by novel rapid-acting mTORC1-targeting ADs. Based on findings in the peripheral blood mononuclear cells, we argue that those may serve as an ex vivo model for evaluation of mTORC1 activity and propose the use of the summarized biomarkers for this purpose. This could both facilitate the selection of a pharmacodynamically active dose and guide future early clinical efficacy studies in MDD. In conclusion, this review provides a blueprint for the rational development of rapid-acting mTORC1-targeting ADs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: