Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 63 papers

Antibody trapping: A novel mechanism of parasite immune evasion by the trematode Echinostoma caproni.

  • Alba Cortés‎ et al.
  • PLoS neglected tropical diseases‎
  • 2017‎

Helminth infections are among the most prevalent neglected tropical diseases, causing an enormous impact in global health and the socioeconomic growth of developing countries. In this context, the study of helminth biology, with emphasis on host-parasite interactions, appears as a promising approach for developing new tools to prevent and control these infections.


Ileal proteomic changes associated with IL-25-mediated resistance against intestinal trematode infections.

  • María Álvarez-Izquierdo‎ et al.
  • Parasites & vectors‎
  • 2020‎

Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, which has been extensively used to investigate the factors that determine the rejection of intestinal helminths. In this sense, several studies have shown that IL-25 is critical for the development of resistance against E. caproni in mice. In fact, treatment of mice with recombinant IL-25 generates resistance against primary E. caproni infection. However, the mechanisms by which IL-25 induces resistance remain unknown.


Reduced prevalence of soil-transmitted helminths and high frequency of protozoan infections in the surrounding urban area of Curitiba, Paraná, Brazil.

  • Camila Yumi Oishi‎ et al.
  • Parasite epidemiology and control‎
  • 2019‎

Human populations living in the surrounding urban areas of large Brazilian cities have increased vulnerability to intestinal parasites. However, the epidemiological scenario of soil-transmitted helminths (STH) in Curitiba, Paraná's main city, remains largely unknown. To bridge this gap of knowledge, this study aims to determine the prevalence of intestinal parasites and to investigate potential transmission pathways of the most prevalent species detected. We conducted a cross-sectional epidemiological study between July and September 2014 among schoolchildren in urban and peri-urban (deprived) areas of the municipality of Campo do Tenente, Curitiba. A total of 549 stool samples were used for coproparasitological diagnosis. Microscopy-positive samples of the most common species found were re-assessed by PCR and sequencing methods at the small subunit rRNA gene. Prevalence of infection by any given enteroparasite was 24.8%, but soil-transmitted helminths were only detected in 3.5% of the examined samples. Frequency of protozoan infections reached 90% and 97.8% in single and multiple infections, respectively. Blastocystis sp. (38.9%) was the most frequently species found in the surveyed schoolchildren population. A total of 41 Blastocystis-positive samples were unambiguously typed as ST1 (36.4%), ST2 (21.2%), ST3 (39.4%), and ST1 + ST3 mixed infection (3.0%). These results indicate that Blastocystis transmission is primarily anthroponotic in origin. This data highlights the importance of maintaining the anthelminthic control programs currently in place and of improving sanitary disposal of human excreta in poor-resource settings.


Anemia and undernutrition in intestinally parasitized schoolchildren from Gakenke district, Northern Province of Rwanda.

  • María José Irisarri-Gutiérrez‎ et al.
  • PloS one‎
  • 2022‎

Rwanda is a sub-Saharan country, where intestinal parasite infections, anemia and undernutrition coexist. The purpose of this research is to study the relationship between intestinal parasite infections and undernutrition/anemia to clarify the priorities of intervention in the rural area of Gakenke district in the Northern Province of Rwanda.


Molecular Diversity of Giardia duodenalis, Cryptosporidium spp., and Blastocystis sp. in Symptomatic and Asymptomatic Schoolchildren in Zambézia Province (Mozambique).

  • Aly S Muadica‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Infections by the protist enteroparasites Giardia duodenalis, Cryptosporidium spp., and, to a much lesser extent, Blastocystis sp. are common causes of childhood diarrhoea in low-income countries. This molecular epidemiological study assesses the frequency and molecular diversity of these pathogens in faecal samples from asymptomatic schoolchildren (n = 807) and symptomatic children seeking medical attention (n = 286) in Zambézia province, Mozambique. Detection and molecular characterisation of pathogens was conducted by polymerase chain reaction (PCR)-based methods coupled with Sanger sequencing. Giardia duodenalis was the most prevalent enteric parasite found [41.7%, 95% confidence interval (CI): 38.8‒44.7%], followed by Blastocystis sp. (14.1%, 95% CI: 12.1‒16.3%), and Cryptosporidium spp. (1.6%, 95% CI: 0.9‒2.5%). Sequence analyses revealed the presence of assemblages A (7.0%, 3/43) and B (88.4%, 38/43) within G. duodenalis-positive children. Four Cryptosporidium species were detected, including C. hominis (30.8%; 4/13), C. parvum (30.8%, 4/13), C. felis (30.8%, 4/13), and C. viatorum (7.6%, 1/13). Four Blastocystis subtypes were also identified including ST1 (22.7%; 35/154), ST2 (22.7%; 35/154), ST3 (45.5%; 70/154), and ST4 (9.1%; 14/154). Most of the genotyped samples were from asymptomatic children. This is the first report of C. viatorum and Blastocystis ST4 in Mozambique. Molecular data indicate that anthropic and zoonotic transmission (the latter at an unknown rate) are important spread pathways of diarrhoea-causing pathogens in Mozambique.


Molecular Characterisation of Cryptosporidium spp. in Mozambican Children Younger than 5 Years Enrolled in a Matched Case-Control Study on the Aetiology of Diarrhoeal Disease.

  • Augusto Messa‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Cryptosporidium is a leading cause of childhood diarrhoea and associated physical and cognitive impairment in low-resource settings. Cryptosporidium-positive faecal samples (n = 190) from children aged ≤ 5 years enrolled in the Global Enteric Multicenter Study (GEMS) in Mozambique detected by ELISA (11.5%, 430/3754) were successfully PCR-amplified and sequenced at the gp60 or ssu rRNA loci for species determination and genotyping. Three Cryptosporidium species including C. hominis (72.6%, 138/190), C. parvum (22.6%, 43/190), and C. meleagridis (4.2%, 8/190) were detected. Children ≤ 23 months were more exposed to Cryptosporidium spp. infections than older children. Both C. hominis and C. parvum were more prevalent among children with diarrhoeal disease compared to those children without it (47.6% vs. 33.3%, p = 0.007 and 23.7% vs. 11.8%, p = 0.014, respectively). A high intra-species genetic variability was observed within C. hominis (subtype families Ia, Ib, Id, Ie, and If) and C. parvum (subtype families IIb, IIc, IIe, and IIi) but not within C. meleagridis (subtype family IIIb). No association between Cryptosporidium species/genotypes and child's age was demonstrated. The predominance of C. hominis and C. parvum IIc suggests that most of the Cryptosporidium infections were anthroponotically transmitted, although zoonotic transmission events also occurred at an unknown rate. The role of livestock, poultry, and other domestic animal species as sources of environmental contamination and human cryptosporidiosis should be investigated in further molecular epidemiological studies in Mozambique.


Evaluation of a Novel Commercial Real-Time PCR Assay for the Simultaneous Detection of Cryptosporidium spp., Giardia duodenalis, and Entamoeba histolytica.

  • Alejandro Dashti‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Cryptosporidium spp., Giardia duodenalis, and Entamoeba histolytica are the most common diarrhea-causing protozoan species globally. Misdiagnosis is a concern for asymptomatic and chronic infections. Multiplexing, i.e., the detection of more than one parasite in a single test by real-time PCR, allows high diagnostic performance with favorable cost-effectiveness. We conducted a clinical evaluation of the VIASURE Cryptosporidium, Giardia, & E. histolytica real-time PCR assay (CerTest Biotec, San Mateo de Gállego, Spain) against a large panel (n = 358) of well-characterized DNA samples positive for Cryptosporidium spp. (n = 96), G. duodenalis (n = 115), E. histolytica (n = 25), and other parasitic species of the phyla Amoebozoa (n = 11), Apicomplexa (n = 14), Euglenozoa (n = 8), Heterokonta (n = 42), Metamonada (n = 37), Microsporidia (n = 4), and Nematoda (n = 6). DNA samples were obtained from clinical stool specimens or cultured isolates in a national reference center. Estimated sensitivity and specificity were 0.96 and 0.99 for Cryptosporidium spp., 0.94 and 1 for G. duodenalis, and 0.96 and 1 for E. histolytica, respectively. Positive and negative predictive values were calculated as 1 and 0.98 for Cryptosporidium spp., 0.99 and 0.98 for G. duodenalis, and 1 and 0.99 for E. histolytica, respectively. The assay identified six Cryptosporidium species (Cryptosporidium hominis, Cryptosporidium parvum, Cryptosporidium canis, Cryptosporidium felis, Cryptosporidium scrofarum, and Cryptosporidium ryanae) and four G. duodenalis assemblages (A, B, C, and F). The VIASURE assay provides rapid and accurate simultaneous detection and identification of the most commonly occurring species and genetic variants of diarrhea-causing parasitic protozoa in humans. IMPORTANCE Thorough independent assessment of the diagnostic performance of novel diagnostic assays is essential to ascertain their true usefulness and applicability in routine clinical practice. This is particularly true for commercially available kits based on multiplex real-time PCR aimed to detect and differentiate multiple pathogens in a single biological sample. In this study, we conducted a clinical evaluation of the VIASURE Cryptosporidium, Giardia, & E. histolytica real-time PCR assay (CerTest Biotec) for the detection and identification of the diarrhea-causing enteric protozoan parasites Cryptosporidium spp., G. duodenalis, and E. histolytica. A large panel of well-characterized DNA samples from clinical stool specimens or cultured isolates from a reference center was used for this purpose. The VIASURE assay demonstrated good performance for the routine testing of these pathogens in clinical microbiological laboratories.


A novel bis(pyrazolyl)methane compound as a potential agent against Gram-positive bacteria.

  • Pedro Seguí‎ et al.
  • Scientific reports‎
  • 2021‎

This study was designed to propose alternative therapeutic compounds to fight against bacterial pathogens. Thus, a library of nitrogen-based compounds bis(triazolyl)methane (1T-7T) and bis(pyrazolyl)methane (1P-11P) was synthesised following previously reported methodologies and their antibacterial activity was tested using the collection strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Moreover, the novel compound 2P was fully characterized by IR, UV-Vis and NMR spectroscopy. To evaluate antibacterial activity, minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) assays were carried out at different concentrations (2-2000 µg/mL). The MTT assay and Resazurin viability assays were performed in both human liver carcinoma HepG2 and human colorectal adenocarcinoma Caco-2 cell lines at 48 h. Of all the synthesised compounds, 2P had an inhibitory effect on Gram-positive strains, especially against S. aureus. The MIC and MBC of 2P were 62.5 and 2000 µg/mL against S. aureus, and 250 and 2000 µg/mL against E. faecalis, respectively. However, these values were > 2000 µg/mL against E. coli and P. aeruginosa. In addition, the MBICs and MBECs of 2P against S. aureus were 125 and > 2000 µg/mL, respectively, whereas these values were > 2000 µg/mL against E. faecalis, E. coli, and P. aeruginosa. On the other hand, concentrations up to 250 µg/mL of 2P were non-toxic doses for eukaryotic cell cultures. Thus, according to the obtained results, the 2P nitrogen-based compound showed a promising anti-Gram-positive effect (especially against S. aureus) both on planktonic state and biofilm, at non-toxic concentrations.


Prevalence and public health relevance of enteric parasites in domestic dogs and cats in the region of Madrid (Spain) with an emphasis on Giardia duodenalis and Cryptosporidium sp.

  • Marta Mateo‎ et al.
  • Veterinary medicine and science‎
  • 2023‎

Pet dogs and cats exert an unquestionable beneficial effect in the well-being of their owners, but can also act as a source of zoonotic infections if improperly cared.


[Wolbachia pipientis infections in populations of Aedes albopictus in the city of València (Spain): implications for mosquito control].

  • Rubén Bueno-Marí‎ et al.
  • Revista espanola de salud publica‎
  • 2023‎

The presence of Aedes albopictus, of high sanitary and social impact, was first reported in Valencia (Eastern Spain) in 2015. Innovative tools for its control include the use of the endosymbiotic bacterium Wolbachia pipientis. The release of mosquito males infected with the wPip strain, has proven very promising for large-scale Incompatible Insect Technique (IIT) applications. Before this strategy can be implemented in Valencia, it is important to know whether the natural local mosquito populations are Wolbachia-infected and, if so, identifying the infecting strains/supergroups, these being the objectives of the present work.


Detection and Molecular Diversity of Cryptosporidium spp. and Giardia duodenalis in the Endangered Iberian Lynx (Lynx pardinus), Spain.

  • Pablo Matas-Méndez‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2024‎

Cryptosporidium spp. and Giardia duodenalis are the main non-viral causes of diarrhoea in humans and domestic animals globally. Comparatively, much less information is currently available in free-ranging carnivore species in general and in the endangered Iberian lynx (Lynx pardinus) in particular. Cryptosporidium spp. and G. duodenalis were investigated with molecular (PCR and Sanger sequencing) methods in individual faecal DNA samples of free-ranging and captive Iberian lynxes from the main population nuclei in Spain. Overall, Cryptosporidium spp. and G. duodenalis were detected in 2.4% (6/251) and 27.9% (70/251) of the animals examined, respectively. Positive animals to at least one of them were detected in each of the analysed population nuclei. The analysis of partial ssu rRNA gene sequences revealed the presence of rodent-adapted C. alticolis (n = 1) and C. occultus (n = 1), leporid-adapted C. cuniculus (n = 2), and zoonotic C. parvum (n = 2) within Cryptosporidium, and zoonotic assemblages A (n = 5) and B (n = 3) within G. duodenalis. Subgenotyping analyses allowed for the identification of genotype VaA19 in C. cuniculus (gp60 locus) and sub-assemblages AI and BIII/BIV in G. duodenalis (gdh, bg, and tpi loci). This study represents the first molecular description of Cryptosporidium spp. and G. duodenalis in the Iberian lynx in Spain. The presence of rodent/leporid-adapted Cryptosporidium species in the surveyed animals suggests spurious infections associated to the Iberian lynx's diet. The Iberian lynx seems a suitable host for zoonotic genetic variants of Cryptosporidium (C. parvum) and G. duodenalis (assemblages A and B), although the potential risk of human transmission is regarded as limited due to light parasite burdens and suspected low excretion of infective (oo)cysts to the environment by infected animals. More research should be conducted to ascertain the true impact of these protozoan parasites in the health status of the endangered Iberian lynx.


Differential alterations in the small intestine epithelial cell turnover during acute and chronic infection with Echinostoma caproni (Trematoda).

  • Alba Cortés‎ et al.
  • Parasites & vectors‎
  • 2015‎

The intestinal epithelium plays a multifactorial role in mucosal defense. In this sense, augmented epithelial cell turnover appears as a potential effector mechanism for the rejection of intestinal-dwelling helminths.


The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis.

  • Krystyna Cwiklinski‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2015‎

Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular "machinery" required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack.


The transcriptome analysis of Strongyloides stercoralis L3i larvae reveals targets for intervention in a neglected disease.

  • Antonio Marcilla‎ et al.
  • PLoS neglected tropical diseases‎
  • 2012‎

Strongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions.


Protist enteroparasites in wild boar (Sus scrofa ferus) and black Iberian pig (Sus scrofa domesticus) in southern Spain: a protective effect on hepatitis E acquisition?

  • Antonio Rivero-Juarez‎ et al.
  • Parasites & vectors‎
  • 2020‎

Several studies have independently evaluated the occurrence of hepatitis E virus (HEV) and enteroparasites in swine, but no surveys have been conducted to jointly assess the prevalence and genetic diversity of enteroparasites in pigs and wild boars, their sympatric transmission between hosts, and their potential interaction with HEV.


Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model.

  • Ana Paula Domínguez Rubio‎ et al.
  • Scientific reports‎
  • 2020‎

Bacterial EVs have been related to inter-kingdom communication between probiotic/pathogenic bacteria and their hosts. Our aim was to investigate the transcytosis process of B. subtilis EVs using an in vitro intestinal epithelial cell model. In this study, using Confocal Laser Scanning Microscopy, we report that uptake and internalization of CFSE-labeled B. subtilis EVs (115 nm ± 27 nm) by Caco-2 cells are time-dependent. To study the transcytosis process we used a transwell system and EVs were quantified in the lower chamber by Fluorescence and Nanoparticle Tracking Analysis measurements. Intact EVs are transported across a polarized cell monolayer at 60-120 min and increased after 240 min with an estimated average uptake efficiency of 30% and this process is dose-dependent. EVs movement into intestinal epithelial cells was mainly through Z axis and scarcely on X and Y axis. This work demonstrates that EVs could be transported across the gastrointestinal epithelium. We speculate this mechanism could be the first step allowing EVs to reach the bloodstream for further delivery up to extraintestinal tissues and organs. The expression and further encapsulation of bioactive molecules into natural nanoparticles produced by probiotic bacteria could have practical implications in food, nutraceuticals and clinical therapies.


Changes in resident microbiota associated with mice susceptibility or resistance to the intestinal trematode Echinostoma caproni.

  • Maria Álvarez-Izquierdo‎ et al.
  • Parasitology‎
  • 2022‎

Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode with no tissue phases in the definitive host that has been extensively used as an experimental model to study the factors that determine resistance against intestinal helminths. In E. caproni infections in mice, interleukin-25 (IL-25) plays a critical role and it is required for the resistance to infection. However, little is known on the factors that determine its production. Primary E. caproni infection in mice is characterized by the development of chronic infections and elevated worm recovery, in relation to a local Th1 response with elevated production of interferon-γ. However, partial resistance against secondary E. caproni infections in ICR (Institute of Cancer Research) mice is developed after the chemotherapeutic cure of a primary infection and the innately produced IL-25 after pharmacological treatment. In this paper, we analyse the potential role of intestinal microbiota in the production of IL-25, and the subsequent resistance to infection. For this purpose, we analysed the production of IL-25 under conditions of experimental dysbiosis and also the changes in the resident microbiota in primary infections, pharmacological curation and secondary infections. The results obtained showed that resident microbiota play a major role in the production of IL-25 and the appearance of members of the phylum Verrucomicrobia as a consequence of the curation of the primary infection could be related to the partial resistance to secondary infection.


Extracellular vesicles from Trypanosoma cruzi-dendritic cell interaction show modulatory properties and confer resistance to lethal infection as a cell-free based therapy strategy.

  • Brenda Celeste Gutierrez‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2022‎

Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.


Special considerations for studies of extracellular vesicles from parasitic helminths: A community-led roadmap to increase rigour and reproducibility.

  • Ruby White‎ et al.
  • Journal of extracellular vesicles‎
  • 2023‎

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Trichuris trichiura egg extract proteome reveals potential diagnostic targets and immunomodulators.

  • Katalina Cruz‎ et al.
  • PLoS neglected tropical diseases‎
  • 2021‎

Embryonated eggs are the infectious developmental stage of Trichuris trichiura and are the primary stimulus for the immune system of the definitive host. The intestinal-dwelling T. trichiura affects an estimated 465 million people worldwide with an estimated global burden of disease of 640 000 DALYs (Disability Adjusted Life Years). In Latin America and the Caribbean, trichuriasis is the most prevalent soil transmitted helminthiasis in the region (12.3%; 95% CI). The adverse health consequences impair childhood school performance and reduce school attendance resulting in lower future wage-earning capacity. The accumulation of the long-term effects translates into poverty promoting sequelae and a cycle of impoverishment. Each infective T. trichiura egg carries the antigens needed to face the immune system with a wide variety of proteins present in the shell, larvae's surface, and the accompanying fluid that contains their excretions/secretions. We used a proteomic approach with tandem mass spectrometry to investigate the proteome of soluble non-embryonated egg extracts of T. trichiura obtained from naturally infected African green monkeys (Chlorocebus sabaeus). A total of 231 proteins were identified, 168 of them with known molecular functions. The proteome revealed common proteins families which are known to play roles in energy and metabolism; the cytoskeleton, muscle and motility; proteolysis; signaling; the stress response and detoxification; transcription and translation; and lipid binding and transport. In addition to the study of the T. trichiura non-embryonated egg proteome, the antigenic profile of the T. trichiura non-embryonated egg and female soluble proteins against serum antibodies from C. sabaeus naturally infected with trichuriasis was investigated. We used an immunoproteomic approach by Western blot and tandem mass spectrometry from the corresponding SDS-PAGE gels. Vitellogenin N and VWD and DUF1943 domain containing protein, poly-cysteine and histidine tailed protein isoform 2, heat shock protein 70, glyceraldehyde-3-phosphate dehydrogenase, actin, and enolase, were among the potential immunoactive proteins. To our knowledge, this is the first study on the T. trichiura non-embryonated egg proteome as a novel source of information on potential targets for immunodiagnostics and immunomodulators from a neglected tropical disease. This initial list of T. trichiura non-embryonated egg proteins (proteome and antigenic profile) can be used in future research on the immunobiology and pathogenesis of human trichuriasis and the treatment of human intestinal immune-related diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: