Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Generation and Characterization of a CRISPR/Cas9 -Induced 3-mst Deficient Zebrafish.

  • Antonia Katsouda‎ et al.
  • Biomolecules‎
  • 2020‎

3-mercaptopyruvate sulfurtransferase (3-MST) is an enzyme capable of synthesizing hydrogen sulfide (H2S) and polysulfides. In spite of its ubiquitous presence in mammalian cells, very few studies have investigated its contribution to homeostasis and disease development, thus the role of 3-MST remains largely unexplored. Here, we present a clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) induced 3-mst mutant zebrafish line, which will allow the study of 3-MST's role in several biological processes. The 3-mst zebrafish orthologue was identified using a bioinformatic approach and verified by its ability to produce H2S in the presence of 3-mercaptopyruvate (3-MP). Its expression pattern was analyzed during zebrafish early development, indicating predominantly an expression in the heart and central nervous system. As expected, no detectable levels of 3-Mst protein were observed in homozygous mutant larvae. In line with this, H2S levels were reduced in 3-mst-/- zebrafish. Although the mutants showed no obvious morphological deficiencies, they exhibited increased lethality under oxidative stress conditions. The elevated levels of reactive oxygen species, detected following 3-mst deletion, are likely to drive this phenotype. In line with the increased ROS, we observed accelerated fin regenerative capacity in 3-mst deficient zebrafish. Overall, we provide evidence for the expression of 3-mst in zebrafish, confirm its important role in redox homeostasis and indicate the enzyme's possible involvement in the regeneration processes.


Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer.

  • Nadiya Druzhyna‎ et al.
  • Pharmacological research‎
  • 2016‎

Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no potent and selective CBS inhibitors are available. Using a composite collection of 8871 clinically used drugs and well-annotated pharmacological compounds (including the LOPAC library, the FDA Approved Drug Library, the NIH Clinical Collection, the New Prestwick Chemical Library, the US Drug Collection, the International Drug Collection, the 'Killer Plates' collection and a small custom collection of PLP-dependent enzyme inhibitors), we conducted an in vitro screen in order to identify inhibitors for CBS using a primary 7-azido-4-methylcoumarin (AzMc) screen to detect CBS-derived hydrogen sulfide (H2S) production. Initial hits were subjected to counterscreens using the methylene blue assay (a secondary assay to measure H2S production) and were assessed for their ability to quench the H2S signal produced by the H2S donor compound GYY4137. Four compounds, hexachlorophene, tannic acid, aurintricarboxylic acid and benserazide showed concentration-dependent CBS inhibitory actions without scavenging H2S released from GYY4137, identifying them as direct CBS inhibitors. Hexachlorophene (IC50: ∼60μM), tannic acid (IC50: ∼40μM) and benserazide (IC50: ∼30μM) were less potent CBS inhibitors than the two reference compounds AOAA (IC50: ∼3μM) and NSC67078 (IC50: ∼1μM), while aurintricarboxylic acid (IC50: ∼3μM) was equipotent with AOAA. The second reference compound NSC67078 not only inhibited the CBS-induced AzMC fluorescence signal (IC50: ∼1μM), but also inhibited with the GYY4137-induced AzMC fluorescence signal with (IC50 of ∼6μM) indicative of scavenging/non-specific effects. Hexachlorophene (IC50: ∼6μM), tannic acid (IC50: ∼20μM), benserazide (IC50: ∼20μM), and NSC67078 (IC50: ∼0.3μM) inhibited HCT116 colon cancer cells proliferation with greater potency than AOAA (IC50: ∼300μM). In contrast, although a CBS inhibitor in the cell-free assay, aurintricarboxylic acid failed to inhibit HCT116 proliferation at lower concentrations, and stimulated cell proliferation at 300μM. Copper-containing compounds present in the libraries, were also found to be potent inhibitors of recombinant CBS; however this activity was due to the CBS inhibitory effect of copper ions themselves. However, copper ions, up to 300μM, did not inhibit HCT116 cell proliferation. Benserazide was only a weak inhibitor of the activity of the other H2S-generating enzymes CSE and 3-MST activity (16% and 35% inhibition at 100μM, respectively) in vitro. Benserazide suppressed HCT116 mitochondrial function and inhibited proliferation of the high CBS-expressing colon cancer cell line HT29, but not the low CBS-expressing line, LoVo. The major benserazide metabolite 2,3,4-trihydroxybenzylhydrazine also inhibited CBS activity and suppressed HCT116 cell proliferation in vitro. In an in vivo study of nude mice bearing human colon cancer cell xenografts, benserazide (50mg/kg/days.q.) prevented tumor growth. In silico docking simulations showed that benserazide binds in the active site of the enzyme and reacts with the PLP cofactor by forming reversible but kinetically stable Schiff base-like adducts with the formyl moiety of pyridoxal. We conclude that benserazide inhibits CBS activity and suppresses colon cancer cell proliferation and bioenergetics in vitro, and tumor growth in vivo. Further pharmacokinetic, pharmacodynamic and preclinical animal studies are necessary to evaluate the potential of repurposing benserazide for the treatment of colorectal cancers.


D-Penicillamine modulates hydrogen sulfide (H2S) pathway through selective inhibition of cystathionine-γ-lyase.

  • Vincenzo Brancaleone‎ et al.
  • British journal of pharmacology‎
  • 2016‎

Hydrogen sulfide (H2S) is a gasotransmitter produced from L-cysteine through the enzymatic action of cystathionine-γ-lyase (CSE) and/or cystathionine-β-synthase. D-Penicillamine is the d isomer of a dimethylated cysteine and has been used for the treatment of rheumatoid arthritis. AsD-penicillamine is structurally very similar to cysteine, we have investigated whether D-penicillamine, as a cysteine analogue, has an effect on the H2 S pathway.


Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE).

  • Antonia Asimakopoulou‎ et al.
  • British journal of pharmacology‎
  • 2013‎

Hydrogen sulfide (H₂S) is a signalling molecule that belongs to the gasotransmitter family. Two major sources for endogenous enzymatic production of H₂S are cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). In the present study, we examined the selectivity of commonly used pharmacological inhibitors of H₂S biosynthesis towards CSE and CBS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: