Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Reduced biliverdin reductase-A levels are associated with early alterations of insulin signaling in obesity.

  • Flavia Agata Cimini‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2019‎

Biliverdin reductase-A (BVR-A) is a serine/threonine/tyrosine kinase involved in the regulation of insulin signaling. In vitro studies have demonstrated that BVR-A is a substrate of the insulin receptor and regulates IRS1 by avoiding its aberrant activation, and in animal model of obesity the loss of hepatic BVR-A has been associated with glucose/insulin alterations and fatty liver disease. However, no studies exist in humans. Here, we evaluated BVR-A expression levels and activation in peripheral blood mononuclear cells (PBMC) from obese subjects and matched lean controls and we investigated the related molecular alterations of the insulin along with clinical correlates. We showed that BVR-A levels are significantly reduced in obese subjects and associated with a hyper-activation of the IR/IRS1/Akt/GSK-3β/AS160/GLUT4 pathway. Low BVR-A levels also associate with the presence of obesity, metabolic syndrome, NASH and visceral adipose tissue inflammation. These data suggest that the reduction of BVR-A may be responsible for early alterations of the insulin signaling pathway in obesity and in this context may represent a novel molecular target to be investigated for the comprehension of the process of insulin resistance development in obesity.


C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG.

  • Valentina Stelitano‎ et al.
  • PloS one‎
  • 2013‎

In biofilms, the bacterial community optimizes the strategies to sense the environment and to communicate from cell to cell. A key player in the development of a bacterial biofilm is the second messenger c-di-GMP, whose intracellular levels are modulated by the opposite activity of diguanylate cyclases and phosphodiesterases. Given the huge impact of bacterial biofilms on human health, understanding the molecular details of c-di-GMP metabolism represents a critical step in the development of novel therapeutic approaches against biofilms. In this study, we present a detailed biochemical characterization of two c-di-GMP phosphodiesterases of the HD-GYP subtype from the human pathogen Pseudomonas aeruginosa, namely PA4781 and PA4108. Upstream of the catalytic HD-GYP domain, PA4781 contains a REC domain typical of two-component systems, while PA4108 contains an uncharacterized domain of unknown function. Our findings shed light on the activity and catalytic mechanism of these phosphodiesterases. We show that both enzymes hydrolyse c-di-GMP in a two-step reaction via the linear intermediate pGpG and that they produce GMP in vitro at a surprisingly low rate. In addition, our data indicate that the non-phosphorylated REC domain of PA4781 prevents accessibility of c-di-GMP to the active site. Both PA4108 and phosphorylated PA4781 are also capable to use pGpG as an alternative substrate and to hydrolyse it into GMP; the affinity of PA4781 for pGpG is one order of magnitude higher than that for c-di-GMP. These results suggest that these enzymes may not work (primarily) as genuine phosphodiesterases. Moreover, the unexpected affinity of PA4781 for pGpG may indicate that pGpG could also act as a signal molecule in its own right, thus further widening the c-di-GMP-related signalling scenario.


Studying GGDEF Domain in the Act: Minimize Conformational Frustration to Prevent Artefacts.

  • Federico Mantoni‎ et al.
  • Life (Basel, Switzerland)‎
  • 2021‎

GGDEF-containing proteins respond to different environmental cues to finely modulate cyclic diguanylate (c-di-GMP) levels in time and space, making the allosteric control a distinctive trait of the corresponding proteins. The diguanylate cyclase mechanism is emblematic of this control: two GGDEF domains, each binding one GTP molecule, must dimerize to enter catalysis and yield c-di-GMP. The need for dimerization makes the GGDEF domain an ideal conformational switch in multidomain proteins. A re-evaluation of the kinetic profile of previously characterized GGDEF domains indicated that they are also able to convert GTP to GMP: this unexpected reactivity occurs when conformational issues hamper the cyclase activity. These results create new questions regarding the characterization and engineering of these proteins for in solution or structural studies.


Cytosolic serine hydroxymethyltransferase controls lung adenocarcinoma cells migratory ability by modulating AMP kinase activity.

  • Amani Bouzidi‎ et al.
  • Cell death & disease‎
  • 2020‎

Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients.


Structure and metal-binding properties of PA4063, a novel player in periplasmic zinc trafficking by Pseudomonas aeruginosa.

  • Annarita Fiorillo‎ et al.
  • Acta crystallographica. Section D, Structural biology‎
  • 2021‎

The capability to obtain essential nutrients in hostile environments is a critical skill for pathogens. Under zinc-deficient conditions, Pseudomonas aeruginosa expresses a pool of metal homeostasis control systems that is complex compared with other Gram-negative bacteria and has only been partially characterized. Here, the structure and zinc-binding properties of the protein PA4063, the first component of the PA4063-PA4066 operon, are described. PA4063 has no homologs in other organisms and is characterized by the presence of two histidine-rich sequences. ITC titration detected two zinc-binding sites with micromolar affinity. Crystallographic characterization, performed both with and without zinc, revealed an α/β-sandwich structure that can be classified as a noncanonical ferredoxin-like fold since it differs in size and topology. The histidine-rich stretches located at the N-terminus and between β3 and β4 are disordered in the apo structure, but a few residues become structured in the presence of zinc, contributing to coordination in one of the two sites. The ability to bind two zinc ions at relatively low affinity, the absence of catalytic cavities and the presence of two histidine-rich loops are properties and structural features which suggest that PA4063 might play a role as a periplasmic zinc chaperone or as a concentration sensor useful for optimizing the response of the pathogen to zinc deficiency.


Dynamic Changes of BVRA Protein Levels Occur in Response to Insulin: A Pilot Study in Humans.

  • Flavia Agata Cimini‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Biliverdin reductase-A (BVRA) is involved in the regulation of insulin signaling and the maintenance of glucose homeostasis. Previous research showed that BVRA alterations are associated with the aberrant activation of insulin signaling in dysmetabolic conditions. However, whether BVRA protein levels change dynamically within the cells in response to insulin and/or glucose remains an open question. To this aim, we evaluated changes of intracellular BVRA levels in peripheral blood mononuclear cells (PBMC) collected during the oral glucose tolerance test (OGTT) in a group of subjects with different levels of insulin sensitivity. Furthermore, we looked for significant correlations with clinical measures. Our data show that BVRA levels change dynamically during the OGTT in response to insulin, and greater BVRA variations occur in those subjects with lower insulin sensitivity. Changes of BVRA significantly correlate with indexes of increased insulin resistance and insulin secretion (HOMA-IR, HOMA-β, and insulinogenic index). At the multivariate regression analysis, the insulinogenic index independently predicted increased BVRA area under curve (AUC) during the OGTT. This pilot study showed, for the first time, that intracellular BVRA protein levels change in response to insulin during OGTT and are greater in subjects with lower insulin sensitivity, supporting the role of BVR-A in the dynamic regulation of the insulin signaling pathway.


Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain.

  • Marzia Perluigi‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

Down syndrome (DS) is the most frequent genetic cause of intellectual disability characterized by the presence of three copies of chromosome 21 (Chr21). Individuals with DS have sufficient neuropathology for a diagnosis of Alzheimer's disease (AD) after the age of 40years. The aim of our study is to gain new insights in the molecular mechanisms impaired in DS subjects that eventually lead to the development of dementia. We evaluate the PI3K/Akt/mTOR axis in the frontal cortex from DS cases (under the age of 40years) and DS with AD neuropathology compared with age-matched controls (Young and Old). The PI3K/Akt/mTOR axis may control several key pathways involved in AD that, if aberrantly regulated, affect amyloid beta (Aβ) deposition and tau phosphorylation. Our results show a hyperactivation of PI3K/Akt/mTOR axis in individuals with DS, with and without AD pathology, in comparison with respective controls. The PI3K/Akt/mTOR deregulation results in decreased autophagy, inhibition of IRS1 and GSK3β activity. Moreover, our data suggest that aberrant activation of the PI3K/Akt/mTOR axis acts in parallel to RCAN1 in phosphorylating tau, in DS and DS/AD. In conclusion, this study provides insights into the neuropathological mechanisms that may be engaged during the development of AD in DS. We suggest that deregulation of this signaling cascade is already evident in young DS cases and persist in the presence of AD pathology. The impairment of the PI3K/Akt/mTOR axis in DS population might represent a key-contributing factor to the neurodegenerative process that culminates in Alzheimer-like dementia.


Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease.

  • Fabio Di Domenico‎ et al.
  • Free radical biology & medicine‎
  • 2014‎

Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.


Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer's disease.

  • Nidhi Sharma‎ et al.
  • Neurobiology of disease‎
  • 2019‎

Hyper-active GSK-3β favors Tau phosphorylation during the progression of Alzheimer's disease (AD). Akt is one of the main kinases inhibiting GSK-3β and its activation occurs in response to neurotoxic stimuli including, i.e., oxidative stress. Biliverdin reductase-A (BVR-A) is a scaffold protein favoring the Akt-mediated inhibition of GSK-3β. Reduced BVR-A levels along with increased oxidative stress were observed early in the hippocampus of 3xTg-AD mice (at 6 months), thus suggesting that loss of BVR-A could be a limiting factor in the oxidative stress-induced Akt-mediated inhibition of GSK-3β in AD. We evaluated changes of BVR-A, Akt, GSK-3β, oxidative stress and Tau phosphorylation levels: (a) in brain from young (6-months) and old (12-months) 3xTg-AD mice; and (b) in post-mortem inferior parietal lobule (IPL) samples from amnestic mild cognitive impairment (MCI), from AD and from age-matched controls. Furthermore, similar analyses were performed in vitro in cells lacking BVR-A and treated with H2O2. Reduced BVR-A levels along with: (a) increased oxidative stress; (b) reduced GSK-3β inhibition; and (c) increased Tau Ser404 phosphorylation (target of GSK-3β activity) without changes of Akt activation in young mice, were observed. Similar findings were obtained in MCI, consistent with the notion that this is a molecular mechanism disrupted in humans. Interestingly, cells lacking BVR-A and treated with H2O2 showed reduced GSK-3β inhibition and increased Tau Ser404 phosphorylation, which resulted from a defect of Akt and GSK-3β physical interaction. Reduced levels of Akt/GSK-3β complex were confirmed in both young 3xTg-AD and MCI brain. We demonstrated that loss of BVR-A impairs the neuroprotective Akt-mediated inhibition of GSK-3β in response to oxidative stress, thus contributing to Tau hyper-phosphorylation in early stage AD. Such changes potential provide promising therapeutic targets for this devastating disorder.


Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome.

  • Antonella Tramutola‎ et al.
  • Translational neurodegeneration‎
  • 2018‎

Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our work we aimed to rescue mTOR signalling in DS mice by a novel rapamycin intranasal administration protocol (InRapa) that maximizes brain delivery and reduce systemic side effects.


Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease.

  • Francesca Triani‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2018‎

Brain insulin resistance is associated with an increased Aβ production in AD although the molecular mechanisms underlying this link are still largely unknown. Biliverdin reductase-A (BVR-A) is a unique Ser/Thr/Tyr kinase regulating insulin signalling. Studies from our group, demonstrated that BVR-A impairment is among the earliest events favoring brain insulin resistance development. Furthermore, reported a negative association between BVR-A protein levels/activation and BACE1 protein levels in the parietal cortex of aged beagles (an animal model of AD), thus suggesting a possible interaction. Therefore, we aimed to demonstrate that BVR-A impairment is a molecular bridge linking brain insulin resistance with increased Aβ production. Age-associated changes of BVR-A, BACE1, insulin signalling cascade and APP processing were evaluated in the parietal cortex of beagles and experiments to confirm the hypothesized mechanism(s) have been performed in vitro in HEK293APPswe cells. Our results show that BVR-A impairment occurs early with age and is associated with brain insulin resistance. Furthermore, we demonstrate that BVR-A impairment favors CK1-mediated Ser phosphorylation of BACE1 (known to mediate BACE1 recycling to plasma membrane) along with increased Aβ production in the parietal cortex, with age. Overall, our results suggest that the impairment of BVR-A is an early molecular event contributing to both (I) the onset of brain insulin resistance and (II) the increased Aβ production observed in AD. We, therefore, suggest that by targeting BVR-A activity it could be possible to delay the onset of brain insulin resistance along with an improved regulation of the APP processing.


Transplacental exposure to AZT induces adverse neurochemical and behavioral effects in a mouse model: protection by L-acetylcarnitine.

  • Anna Rita Zuena‎ et al.
  • PloS one‎
  • 2013‎

Maternal-fetal HIV-1 transmission can be prevented by administration of AZT, alone or in combination with other antiretroviral drugs to pregnant HIV-1-infected women and their newborns. In spite of the benefits deriving from this life-saving prophylactic therapy, there is still considerable uncertainty on the potential long-term adverse effects of antiretroviral drugs on exposed children. Clinical and experimental studies have consistently shown the occurrence of mitochondrial dysfunction and increased oxidative stress following prenatal treatment with antiretroviral drugs, and clinical evidence suggests that the developing brain is one of the targets of the toxic action of these compounds possibly resulting in behavioral problems. We intended to verify the effects on brain and behavior of mice exposed during gestation to AZT, the backbone of antiretroviral therapy during human pregnancy. We hypothesized that glutamate, a neurotransmitter involved in excitotoxicity and behavioral plasticity, could be one of the major actors in AZT-induced neurochemical and behavioral alterations. We also assessed the antioxidant and neuroprotective effect of L-acetylcarnitine, a compound that improves mitochondrial function and is successfully used to treat antiretroviral-induced polyneuropathy in HIV-1 patients. We found that transplacental exposure to AZT given per os to pregnant mice from day 10 of pregnancy to delivery impaired in the adult offspring spatial learning and memory, enhanced corticosterone release in response to acute stress, increased brain oxidative stress also at birth and markedly reduced expression of mGluR1 and mGluR5 subtypes and GluR1 subunit of AMPA receptors in the hippocampus. Notably, administration during the entire pregnancy of L-acetylcarnitine was effective in preventing/ameliorating the neurochemical, neuroendocrine and behavioral adverse effects induced by AZT in the offspring. The present preclinical findings provide a mechanistic hypothesis for the neurobehavioral effects of AZT and strongly suggest that preventive administration of L-acetylcarnitine might be effective in reducing the neurological side-effects of antiretroviral therapy in fetus/newborn.


Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: a novel potential treatment for binge eating disorder.

  • Adele Romano‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2020‎

Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.


Cytosolic localization and in vitro assembly of human de novo thymidylate synthesis complex.

  • Sharon Spizzichino‎ et al.
  • The FEBS journal‎
  • 2022‎

De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein-protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.


Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine levels across cellular compartments.

  • Michele Monti‎ et al.
  • Computational and structural biotechnology journal‎
  • 2021‎

Human serine hydroxymethyltransferase (SHMT) regulates the serine-glycine one carbon metabolism and plays a role in cancer metabolic reprogramming. Two SHMT isozymes are acting in the cell: SHMT1 encoding the cytoplasmic isozyme, and SHMT2 encoding the mitochondrial one. Here we present a molecular model built on experimental data reporting the interaction between SHMT1 protein and SHMT2 mRNA, recently discovered in lung cancer cells. Using a stochastic dynamic model, we show that RNA moieties dynamically regulate serine and glycine concentration, shaping the system behaviour. For the first time we observe an active functional role of the RNA in the regulation of the serine-glycine metabolism and availability, which unravels a complex layer of regulation that cancer cells exploit to fine tune amino acids availability according to their metabolic needs. The quantitative model, complemented by an experimental validation in the lung adenocarcinoma cell line H1299, exploits RNA molecules as metabolic switches of the SHMT1 activity. Our results pave the way for the development of RNA-based molecules able to unbalance serine metabolism in cancer cells.


The phosphodiesterase RmcA contributes to the adaptation of Pseudomonas putida to l-arginine.

  • Chiara Scribani-Rossi‎ et al.
  • FEMS microbiology letters‎
  • 2023‎

Amino acids are crucial in nitrogen cycling and to shape the metabolism of microorganisms. Among them, arginine is a versatile molecule able to sustain nitrogen, carbon, and even ATP supply and to regulate multicellular behaviors such as biofilm formation. Arginine modulates the intracellular levels of 3'-5'cyclic diguanylic acid (c-di-GMP), a second messenger that controls biofilm formation, maintenance and dispersion. In Pseudomonas putida, KT2440, a versatile microorganism with wide biotechnological applications, modulation of c-di-GMP levels by arginine requires the transcriptional regulator ArgR, but the connections between arginine metabolism and c-di-GMP are not fully characterized. It has been recently demonstrated that arginine can be perceived by the opportunistic human pathogen Pseudomonas aeruginosa through the transducer RmcA protein (Redox regulator of c-di-GMP), which can directly decrease c-di-GMP levels and possibly affect biofilm architecture. A RmcA homolog is present in P. putida, but its function and involvement in arginine perceiving or biofilm life cycle had not been studied. Here, we present a preliminary characterization of the RmcA-dependent response to arginine in P. putida in modulating biofilm formation, c-di-GMP levels, and energy metabolism. This work contributes to further understanding the molecular mechanisms linking biofilm homeostasis and environmental adaptation.


Protein nitration profile of CD3+ lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection.

  • Antonella Tramutola‎ et al.
  • Free radical biology & medicine‎
  • 2018‎

Alzheimer's disease (AD) is a progressive form of dementia characterized by increased production of amyloid-β plaques and hyperphosphorylated tau protein, mitochondrial dysfunction, elevated oxidative stress, reduced protein clearance, among other. Several studies showed systemic modifications of immune and inflammatory systems due, in part, to decreased levels of CD3+ lymphocytes in peripheral blood in AD. Considering that oxidative stress, both in the brain and in the periphery, can influence the activation and differentiation of T-cells, we investigated the 3-nitrotyrosine (3-NT) proteome of blood T-cells derived from AD patients compared to non-demented (ND) subjects by using a proteomic approach. 3-NT is a formal protein oxidation and index of nitrosative stress. We identified ten proteins showing increasing levels of 3-NT in CD3+ T-cells from AD patients compared with ND subjects. These proteins are involved in energy metabolism, cytoskeletal structure, intracellular signaling, protein folding and turnover, and antioxidant response and provide new insights into the molecular mechanism that impact reduced T-cell differentiation in AD. Our results highlight the role of peripheral oxidative stress in T-cells related to immune-senescence during AD pathology focusing on the specific targets of protein nitration that conceivably can be suitable to further therapies. Further, our data demonstrate common targets of protein nitration between the brain and the periphery, supporting their significance as disease biomarkers.


How pyridoxal 5'-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state.

  • Giorgio Giardina‎ et al.
  • The FEBS journal‎
  • 2015‎

Adaptive metabolic reprogramming gives cancer cells a proliferative advantage. Tumour cells extensively use glycolysis to sustain anabolism and produce serine, which not only refuels the one-carbon units necessary for the synthesis of nucleotide precursors and for DNA methylation, but also affects the cellular redox homeostasis. Given its central role in serine metabolism, serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, is an attractive target for tumour chemotherapy. In humans, the cytosolic isoform (SHMT1) and the mitochondrial isoform (SHMT2) have distinct cellular roles, but high sequence identity and comparable catalytic properties, which may complicate development of successful therapeutic strategies. Here, we investigated how binding of the cofactor PLP controls the oligomeric state of the human isoforms. The fact that eukaryotic SHMTs are tetrameric proteins while bacterial SHMTs function as dimers may suggest that the quaternary assembly in eukaryotes provides an advantage to fine-tune SHMT function and differentially regulate intertwined metabolic fluxes, and may provide a tool to address the specificity problem. We determined the crystal structure of SHMT2, and compared it to the apo-enzyme structure, showing that PLP binding triggers a disorder-to-order transition accompanied by a large rigid-body movement of the two cofactor-binding domains. Moreover, we demonstrated that SHMT1 exists in solution as a tetramer, both in the absence and presence of PLP, while SHMT2 undergoes a dimer-to-tetramer transition upon PLP binding. These findings indicate an unexpected structural difference between the two human SHMT isoforms, which opens new perspectives for understanding their differing behaviours, roles or regulation mechanisms in response to PLP availability in vivo.


Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: Focus on HNE-modified proteins in a mouse model of down syndrome.

  • Fabio Di Domenico‎ et al.
  • Redox biology‎
  • 2019‎

Increasing evidences support the notion that the impairment of intracellular degradative machinery is responsible for the accumulation of oxidized/misfolded proteins that ultimately results in the deposition of protein aggregates. These events are key pathological aspects of "protein misfolding diseases", including Alzheimer disease (AD). Interestingly, Down syndrome (DS) neuropathology shares many features with AD, such as the deposition of both amyloid plaques and neurofibrillary tangles. Studies from our group and others demonstrated, in DS brain, the dysfunction of both proteasome and autophagy degradative systems, coupled with increased oxidative damage. Further, we observed the aberrant increase of mTOR signaling and of its down-stream pathways in both DS brain and in Ts65Dn mice. Based on these findings, we support the ability of intranasal rapamycin treatment (InRapa) to restore mTOR pathway but also to restrain oxidative stress resulting in the decreased accumulation of lipoxidized proteins. By proteomics approach, we were able to identify specific proteins that showed decreased levels of HNE-modification after InRapa treatment compared with vehicle group. Among MS-identified proteins, we found that reduced oxidation of arginase-1 (ARG-1) and protein phosphatase 2A (PP2A) might play a key role in reducing brain damage associated with synaptic transmission failure and tau hyperphosphorylation. InRapa treatment, by reducing ARG-1 protein-bound HNE levels, rescues its enzyme activity and conceivably contribute to the recovery of arginase-regulated functions. Further, it was shown that PP2A inhibition induces tau hyperphosphorylation and spatial memory deficits. Our data suggest that InRapa was able to rescue PP2A activity as suggested by reduced p-tau levels. In summary, considering that mTOR pathway is a central hub of multiple intracellular signaling, we propose that InRapa treatment is able to lower the lipoxidation-mediated damage to proteins, thus representing a valuable therapeutic strategy to reduce the early development of AD pathology in DS population.


Fractalkine Modulates Microglia Metabolism in Brain Ischemia.

  • Clotilde Lauro‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

In the CNS, the chemokine CX3CL1 (fractalkine) is expressed on neurons while its specific receptor CX3CR1 is expressed on microglia and macrophages. Microglia play an important role in health and disease through CX3CL1/CX3CR1 signaling, and in many neurodegenerative disorders, microglia dysregulation has been associated with neuro-inflammation. We have previously shown that CX3CL1 has neuroprotective effects against cerebral ischemia injury. Here, we investigated the involvement of CX3CL1 in the modulation of microglia phenotype and the underlying neuroprotective effect on ischemia injury. The expression profiles of anti- and pro-inflammatory genes showed that CX3CL1 markedly inhibited microglial activation both in vitro and in vivo after permanent middle cerebral artery occlusion (pMCAO), accompanied by an increase in the expression of anti-inflammatory genes. Moreover, CX3CL1 induces a metabolic switch in microglial cells with an increase in the expression of genes related to the oxidative pathway and a reduction in those related to the glycolytic pathway, which is the metabolic state associated to the pro-inflammatory phenotype for energy production. The data reported in this paper suggest that CX3CL1 protects against cerebral ischemia modulating the activation state of microglia and its metabolism in order to restrain inflammation and organize a neuroprotective response against the ischemic insult.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: