Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Hsp27 is persistently expressed in zebrafish skeletal and cardiac muscle tissues but dispensable for their morphogenesis.

  • Nathan R Tucker‎ et al.
  • Cell stress & chaperones‎
  • 2009‎

Constitutive expression of Hsp27 has been demonstrated in vertebrate embryos, especially in developing skeletal and cardiac muscle. Results of several previous studies have indicated that Hsp27 could play a role in the development of these tissues. For example, inhibition of Hsp27 expression has been reported to cause defective development of mammalian myoblasts in vitro and frog embryos in vivo. In contrast, transgenic mice lacking Hsp27 develop normally. Here, we examined the distribution of Hsp27 protein in developing and adult zebrafish and effects of suppressing Hsp27 expression using phosphorodiamidate morpholino oligonucleotides (PMO) on zebrafish development. Consistent with our previous analysis of hsp27 messenger RNA expression, we detected the protein Hsp27 in cardiac, smooth, and skeletal muscle of both embryonic and adult zebrafish. However, embryos lacking detectable Hsp27 after injection of antisense hsp27 PMO exhibited comparable heart beat rates to that of control embryos and cardiac morphology was indistinguishable in the presence or absence of Hsp27. Loss of Hsp27 also had no effect on the structure of the skeletal muscle myotomes in the developing embryo. Finally, embryos injected with antisense hsp27 and scrambled control PMO displayed equal motility. We conclude that Hsp27 is dispensable for zebrafish morphogenesis but could play a role in long-term maintenance of heart and muscle tissues.


Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila.

  • Sandy T Oas‎ et al.
  • The Journal of cell biology‎
  • 2014‎

Drosophila melanogaster flight muscles are distinct from other skeletal muscles, such as jump muscles, and express several uniquely spliced muscle-associated transcripts. We sought to identify factors mediating splicing differences between the flight and jump muscle fiber types. We found that the ribonucleic acid-binding protein Arrest (Aret) is expressed in flight muscles: in founder cells, Aret accumulates in a novel intranuclear compartment that we termed the Bruno body, and after the onset of muscle differentiation, Aret disperses in the nucleus. Down-regulation of the aret gene led to ultrastructural changes and functional impairment of flight muscles, and transcripts of structural genes expressed in the flight muscles became spliced in a manner characteristic of jump muscles. Aret also potently promoted flight muscle splicing patterns when ectopically expressed in jump muscles or tissue culture cells. Genetically, aret is located downstream of exd (extradenticle), hth (homothorax), and salm (spalt major), transcription factors that control fiber identity. Our observations provide insight into a transcriptional and splicing regulatory network for muscle fiber specification.


Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila.

  • Anton L Bryantsev‎ et al.
  • Developmental biology‎
  • 2012‎

Identifying the genetic program that leads to formation of functionally and morphologically distinct muscle fibers is one of the major challenges in developmental biology. In Drosophila, the Myocyte Enhancer Factor-2 (MEF2) transcription factor is important for all types of embryonic muscle differentiation. In this study we investigated the role of MEF2 at different stages of adult skeletal muscle formation, where a diverse group of specialized muscles arises. Through stage- and tissue-specific expression of Mef2 RNAi constructs, we demonstrate that MEF2 is critical at the early stages of adult myoblast fusion: mutant myoblasts are attracted normally to their founder cell targets, but are unable to fuse to form myotubes. Interestingly, ablation of Mef2 expression at later stages of development showed MEF2 to be more dispensable for structural gene expression: after myoblast fusion, Mef2 knockdown did not interrupt expression of major structural gene transcripts, and myofibrils were formed. However, the MEF2-depleted fibers showed impaired integrity and a lack of fibrillar organization. When Mef2 RNAi was induced in muscles following eclosion, we found no adverse effects of attenuating Mef2 function. We conclude that in the context of adult myogenesis, MEF2 remains an essential factor, participating in control of myoblast fusion, and myofibrillogenesis in developing myotubes. However, MEF2 does not show a major requirement in the maintenance of muscle structural gene expression. Our findings point to the importance of a diversity of regulatory factors that are required for the formation and function of the distinct muscle fibers found in animals.


Regulation of fiber-specific actin expression by the Drosophila SRF ortholog Blistered.

  • Ashley A DeAguero‎ et al.
  • Development (Cambridge, England)‎
  • 2019‎

Serum response factor (SRF) has an established role in controlling actin homeostasis in mammalian cells, yet its role in non-vertebrate muscle development has remained enigmatic. Here, we demonstrate that the single Drosophila SRF ortholog, termed Blistered (Bs), is expressed in all adult muscles, but Bs is required for muscle organization only in the adult indirect flight muscles. Bs is a direct activator of the flight muscle actin gene Act88F, via a conserved promoter-proximal binding site. However, Bs only activates Act88F expression in the context of the flight muscle regulatory program provided by the Pbx and Meis orthologs Extradenticle and Homothorax, and appears to function in a similar manner to mammalian SRF in muscle maturation. These studies place Bs in a regulatory framework where it functions to sustain the flight muscle phenotype in Drosophila Our studies uncover an evolutionarily ancient role for SRF in regulating muscle actin expression, and provide a model for how SRF might function to sustain muscle fate downstream of pioneer factors.


Extradenticle and homothorax control adult muscle fiber identity in Drosophila.

  • Anton L Bryantsev‎ et al.
  • Developmental cell‎
  • 2012‎

Here we identify a key role for the homeodomain proteins Extradenticle (Exd) and Homothorax (Hth) in the specification of muscle fiber fate in Drosophila. exd and hth are expressed in the fibrillar indirect flight muscles but not in tubular jump muscles, and manipulating exd or hth expression converts one muscle type into the other. In the flight muscles, exd and hth are genetically upstream of another muscle identity gene, salm, and are direct transcriptional regulators of the signature flight muscle structural gene, Actin88F. Exd and Hth also impact muscle identity in other somatic muscles of the body by cooperating with Hox factors. Because mammalian orthologs of exd and hth also contribute to muscle gene regulation, our studies suggest that an evolutionarily conserved genetic pathway determines muscle fiber differentiation.


Functional redundancy and nonredundancy between two Troponin C isoforms in Drosophila adult muscles.

  • Maria B Chechenova‎ et al.
  • Molecular biology of the cell‎
  • 2017‎

We investigated the functional overlap of two muscle Troponin C (TpnC) genes that are expressed in the adult fruit fly, Drosophila melanogaster: TpnC4 is predominantly expressed in the indirect flight muscles (IFMs), whereas TpnC41C is the main isoform in the tergal depressor of the trochanter muscle (TDT; jump muscle). Using CRISPR/Cas9, we created a transgenic line with a homozygous deletion of TpnC41C and compared its phenotype to a line lacking functional TpnC4 We found that the removal of either of these genes leads to expression of the other isoform in both muscle types. The switching between isoforms occurs at the transcriptional level and involves minimal enhancers located upstream of the transcription start points of each gene. Functionally, the two TpnC isoforms were not equal. Although ectopic TpnC4 in TDT muscles was able to maintain jumping ability, TpnC41C in IFMs could not effectively support flying. Simultaneous functional disruption of both TpnC genes resulted in jump-defective and flightless phenotypes of the survivors, as well as abnormal sarcomere organization. These results indicated that TpnC is required for myofibril assembly, and that there is functional specialization among TpnC isoforms in Drosophila.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: