Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

The Rare, the Best: Spread of Antimalarial-Resistant Plasmodium falciparum Parasites by Anopheles Mosquito Vectors.

  • Antoine Berry‎ et al.
  • Microbiology spectrum‎
  • 2021‎

The emergence of resistance to antimalarials has prompted the steady switch to novel therapies for decades. Withdrawal of antimalarials, such as chloroquine in sub-Saharan Africa in the late 1990s, led to rapid declines in the prevalence of resistance markers after a few years, raising the possibility of reintroducing them for malaria treatment. Here, we provide evidence that the mosquito vector plays a crucial role in maintaining parasite genetic diversity. We followed the transmission dynamics of Plasmodium falciparum parasites through its vector in natural infections from gametocytes contained in the blood of asymptomatic volunteers until sporozoites subsequently developed in the mosquito salivary glands. We did not find any selection of the mutant or wild-type pfcrt 76 allele during development in the Anopheles mosquito vector. However, microsatellite genotyping indicated that minority genotypes were favored during transmission through the mosquito. The analysis of changes in the proportions of mutant and wild-type pfcrt 76 alleles showed that, regardless of the genotype, the less-represented allele in the gametocyte population was more abundant in mosquito salivary glands, indicating a selective advantage of the minority allele in the vector. Selection of minority genotypes in the vector would explain the persistence of drug-resistant alleles in the absence of drug pressure in areas with high malaria endemicity and high genetic diversity. Our results may have important epidemiological implications, as they predict the rapid re-emergence and spread of resistant genotypes if antimalarials that had previously selected resistant parasites are reintroduced for malaria prevention or treatment. IMPORTANCE Drug selection pressure in malaria patients is the cause of the emergence of resistant parasites. Resistance imposes a fitness cost for parasites in untreated infections, so withdrawal of the drug leads to the return of susceptible parasites. Little is known about the role of the malaria vector in this phenomenon. In an experimental study conducted in Cameroon, an area of high malaria transmission, we showed that the vector did not favor the parasites based on sensitivity or resistance criteria, but it did favor the selection of minority clones. This finding shows that the vector increases the diversity of plasmodial populations and could play an important role in falciparum malaria epidemiology by maintaining resistant clones despite the absence of therapeutic pressure.


Lower exposure and faster clearance of bevacizumab in gastric cancer and the impact of patient variables: analysis of individual data from AVAGAST phase III trial.

  • Kelong Han‎ et al.
  • The AAPS journal‎
  • 2014‎

Altered pharmacokinetics of antibody drugs has been reported in advanced gastric cancer (AGC). We aim to evaluate bevacizumab pharmacokinetics in AGC from the Phase III trial (AVAGAST), and explore the influence of patient variables. Bevacizumab concentrations (Cp) were measured in plasma samples taken following disease progression from 162 patients (7.5 mg/kg every 3 weeks). Predicted Cp [median and 90% prediction interval] was simulated using the population pharmacokinetic model established for other cancers (PPK model) and compared to observed Cp. Bevacizumab clearance was estimated using NONMEM and compared between subgroups. Patient characteristics of AGC are similar to other cancers except for lower body weight despite higher percentage of males. Eighty-five percent of observed Cp was below the median predicted Cp and 38% below the lower boundary of the 90% prediction interval. Median bevacizumab clearance in AGC was 4.5 versus 3 mL/day/kg in other cancers. Bevacizumab clearance was significantly faster (p < 0.05) in patients without gastrectomy (n = 42) or lower albumin. Clearance appeared to be faster in patients with lower total protein, higher ECOG scores, more metastatic sites, and poorer response. No significant difference in bevacizumab concentrations and clearance was observed between Asian and Non-Asian patients. AGC patients exhibited significantly lower bevacizumab exposure due to an approximate 50% increase in clearance versus other cancers. Bevacizumab is cleared faster in patients without prior gastrectomy. No significant difference in bevacizumab pharmacokinetics was observed between Asian and Non-Asian patients. The underlying mechanism for faster bevacizumab clearance in AGC is unknown and warrants further research.


Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation.

  • Kelong Han‎ et al.
  • British journal of clinical pharmacology‎
  • 2016‎

The aim of the present study was to evaluate the pharmacokinetics of bevacizumab and various dosing strategies for this agent in paediatric patients.


Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure.

  • Sandie Ménard‎ et al.
  • Emerging infectious diseases‎
  • 2015‎

Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile. Although 50% inhibitory concentrations for 10 antimalarial drugs tested were unchanged, drug-tolerant parasites showed higher recrudescence rates for endoperoxides, quinolones, and an antifolate, including partner drugs of recommended combination therapies, but remained susceptible to atovaquone. Moreover, the age range of intraerythrocytic stages able to resist artemisinin was extended to older ring forms and trophozoites. Multidrug tolerance results from drug-induced quiescence, which enables parasites to survive exposure to unrelated antimalarial drugs that inhibit a variety of metabolic pathways. This novel resistance pattern should be urgently monitored in the field because this pattern is not detected by current assays and represents a major threat to antimalarial drug policy.


Young Sprague Dawley rats infected by Plasmodium berghei: A relevant experimental model to study cerebral malaria.

  • Sokhna Keita Alassane‎ et al.
  • PloS one‎
  • 2017‎

Cerebral malaria (CM) is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173) infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM) symptoms while the majority (55%) of the remaining rats developed severe anemia and hyperparasitemia (NoECM). These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC) count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.


Implication of glutathione in the in vitro antiplasmodial mechanism of action of ellagic acid.

  • Patrice Njomnang Soh‎ et al.
  • PloS one‎
  • 2012‎

The search for new antimalarial chemotherapy has become increasingly urgent due to parasite resistance to current drugs. Ellagic acid (EA) is a polyphenol, recently found in various plant products, that has effective antimalarial activity in vitro and in vivo without toxicity. To further understand the antimalarial mechanism of action of EA in vitro, we evaluated the effects of EA, ascorbic acid and N-acetyl-L-cysteine (NAC), alone and/or in combination on the production of reactive oxygen species (ROS) during the trophozoite and schizonte stages of the erythrocytic cycle of P. falciparum. The parasitized erythrocytes were pre-labelled with DCFDA (dichlorofluorescein diacetate). We showed that NAC had no effect on ROS production, contrary to ascorbic acid and EA, which considerably reduced ROS production. Surprisingly, EA reduced the production of the ROS with concentrations (6.6×10(-9) - 6.6×10(-6) M) ten-fold lower than ascorbic acid (113×10(-6) M). Additionally, the in vitro drug sensitivity of EA with antioxidants showed that antiplasmodial activity is independent of the ROS production inside parasites, which was confirmed by the additive activity of EA and desferrioxamine. Finally, EA could act by reducing the glutathione content inside the Plasmodium parasite. This was consolidated by the decrease in the antiplasmodial efficacy of EA in the murine model Plasmodium yoelii- high GSH strain, known for its high glutathione content. Given its low toxicity and now known mechanism of action, EA appears as a promising antiplasmodial compound.


A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner.

  • Ali Hassan‎ et al.
  • mBio‎
  • 2020‎

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund's adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.


Preclinical and Phase 1 Assessment of Antisense Oligonucleotide Bepirovirsen in Hepatitis B Virus-Transgenic Mice and Healthy Human Volunteers: Support for Clinical Dose Selection and Evaluation of Safety, Tolerability, and Pharmacokinetics of Single and Multiple Doses.

  • Kelong Han‎ et al.
  • Clinical pharmacology in drug development‎
  • 2022‎

Dose-dependent reductions in hepatitis B virus (HBV) RNA, DNA, and viral proteins following bepirovirsen administration were observed in HepG2.2.15 cells. In HBV-transgenic mice treated at 50 mg/kg/wk, hepatic HBV RNA and DNA were reduced by 90% and 99%, respectively. Subsequently, a phase 1 first-in-human study assessed pharmacokinetics and tolerability of single (75-450 mg) and multiple (150-450 mg on days 1, 4, 8, 11, 15, and 22) subcutaneous bepirovirsen doses in 96 healthy volunteers. Bepirovirsen at all dose levels was rapidly absorbed (maximum plasma concentration 3-8 hours after dosing), rapidly distributed to peripheral tissues, and slowly eliminated (median plasma terminal half-life: 22.5-24.6 days across cohorts). Plasma exposure (dose-proportional at 150-450 mg) and concentration-time profiles were similar following the first and sixth doses, suggesting little to no plasma accumulation (steady state achieved by day 22). Renal elimination of full-length bepirovirsen accounted for <2% of the total dose. Across the single and multiple dose cohorts, 197 treatment-emergent adverse events were reported, with 99% and 65% classified as mild in severity and local injection site reactions, respectively. In conclusion, bepirovirsen showed an acceptable safety profile in humans with observed pharmacokinetics consistent with the chemical class, warranting further evaluation of bepirovirsen in chronic HBV infection.


Safety, Tolerability, Pharmacokinetics, and Acceptability of Oral and Long-Acting Cabotegravir in HIV-Negative Chinese Men.

  • Kelong Han‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2022‎

Long-acting (LA) cabotegravir demonstrated superior efficacy versus daily oral standard-of-care for HIV-1 preexposure prophylaxis. This phase 1 study assessed safety, tolerability, pharmacokinetics, and acceptability of cabotegravir in 47 HIV-negative adult Chinese men at low risk of acquiring HIV-1. Participants received once-daily oral cabotegravir 30 mg for 4 weeks and, after a 1-week washout, five 600-mg (3-mL) intramuscular cabotegravir LA injections at weeks 5, 9, 17, 25, and 33. Pharmacokinetic plasma samples were intensively collected on day 27 (n = 17) and sparsely collected before each injection until 56 weeks after final injection (n = 47). Cabotegravir LA injections were acceptable and well tolerated. Common adverse events included injection site pain, injection site swelling, and upper respiratory tract infection. No drug-related serious adverse events or deaths occurred. Mean cabotegravir concentration remained above 1.33 μg/mL (8× in vitro protein-adjusted concentration for 90% of the maximum inhibition of viral growth [PA-IC90]) before each injection and above 0.166 μg/mL (PA-IC90) for >32 weeks after final injection. Trough concentrations remained above PA-IC90 in nearly all participants and showed minimal accumulation. Noncompartmental pharmacokinetic analysis was performed. Geometric mean of terminal half-life was 1.89 and 47 days after oral and LA dosing, respectively. Cabotegravir concentrations were estimated to remain quantifiable for 48.7 weeks after final injection. Steady-state area under the concentration-time curve (AUC), peak concentration, trough concentration, terminal half-life, time to peak concentration, and apparent clearance after cabotegravir oral and LA dosing were similar to those estimated in non-Asian men in historical studies. These results support further clinical development of cabotegravir LA in China. (This study has been registered at ClinicalTrials.gov under registration no. NCT03422172.).


Human Plasmodium vivax diversity, population structure and evolutionary origin.

  • Virginie Rougeron‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

More than 200 million malaria clinical cases are reported each year due to Plasmodium vivax, the most widespread Plasmodium species in the world. This species has been neglected and understudied for a long time, due to its lower mortality in comparison with Plasmodium falciparum. A renewed interest has emerged in the past decade with the discovery of antimalarial drug resistance and of severe and even fatal human cases. Nonetheless, today there are still significant gaps in our understanding of the population genetics and evolutionary history of P. vivax, particularly because of a lack of genetic data from Africa. To address these gaps, we genotyped 14 microsatellite loci in 834 samples obtained from 28 locations in 20 countries from around the world. We discuss the worldwide population genetic structure and diversity and the evolutionary origin of P. vivax in the world and its introduction into the Americas. This study demonstrates the importance of conducting genome-wide analyses of P. vivax in order to unravel its complex evolutionary history.


Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers.

  • Christelle M Ngou‎ et al.
  • BMC infectious diseases‎
  • 2023‎

Sickle cell trait (SCT) refers to the carriage of one abnormal copy of the β-globin gene, the HbS allele. SCT offers protection against malaria, controlling parasite density and preventing progression to symptomatic malaria. However, it remains unclear whether SCT also affects transmission stages and mosquito infection parameters. Deciphering the impact of the SCT on human to mosquito malaria transmission is key to understanding mechanisms that maintain the trait in malaria endemic areas.


Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria.

  • Majoline T Tchioffo‎ et al.
  • PloS one‎
  • 2013‎

The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissière et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings.


Nrf2, a PPARγ alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria.

  • David Olagnier‎ et al.
  • PLoS pathogens‎
  • 2011‎

CD36 is the major receptor mediating nonopsonic phagocytosis of Plasmodium falciparum-parasitized erythrocytes by macrophages. Its expression on macrophages is mainly controlled by the nuclear receptor PPARγ. Here, we demonstrate that inflammatory processes negatively regulate CD36 expression on human and murine macrophages, and hence decrease Plasmodium clearance directly favoring the worsening of malaria infection. This CD36 downregulation in inflammatory conditions is associated with a failure in the expression and activation of PPARγ. Interestingly, using siRNA mediating knock down of Nrf2 in macrophages or Nrf2- and PPARγ-deficient macrophages, we establish that in inflammatory conditions, the Nrf2 transcription factor controls CD36 expression independently of PPARγ. In these conditions, Nrf2 activators, but not PPARγ ligands, enhance CD36 expression and CD36-mediated Plasmodium phagocytosis. These results were confirmed in human macrophages and in vivo where only Nrf2 activators improve the outcome of severe malaria. Collectively, this report highlights that the Nrf2 transcription factor could be an alternative target to PPARγ in the control of severe malaria through parasite clearance.


n-3 and n-6 polyunsaturated fatty acids induce the expression of COX-2 via PPARgamma activation in human keratinocyte HaCaT cells.

  • Gérald Chêne‎ et al.
  • Biochimica et biophysica acta‎
  • 2007‎

Polyunsaturated fatty acids (PUFA) n-3 inhibit inflammation, in vivo and in vitro in keratinocytes. We examined in HaCaT keratinocyte cell line whether eicosapentaenoic acid (EPA) a n-3 PUFA, gamma-linoleic acid (GLA) a n-6 PUFA, and arachidic acid a saturated fatty acid, modulate expression of cyclooxygenase-2 (COX-2), an enzyme pivotal to skin inflammation and reparation. We demonstrate that only treatment of HaCaT with GLA and EPA or a PPARgamma ligand (roziglitazone), induced COX-2 expression (protein and mRNA). Moreover stimulation of COX-2 promoter activity was increased by those PUFAs or rosiglitazone. The inhibitory effects of GW9662 and T0070907 (PPARgamma antagonists), on COX-2 expression and on stimulation of COX-2 promoter activity by EPA and GLA suggest that PPARgamma is implicated in COX-2 induction. Finally, PLA2 inhibitor methyl arachidonyl fluorophosphonate blocked the PUFA effects on COX-2 induction, promoter activity and arachidonic acid mobilization suggesting involvement of AA metabolites in PPAR activation. These findings demonstrate that n-3 and n-6 PUFA increased PPARgamma activity is necessary for the COX-2 induction in HaCaT human keratinocyte cells. Given the anti-inflammatory properties of EPA, we suggest that induction of COX-2 in keratinocytes may be important in the anti-inflammatory and protective mechanism of action of PUFAs n-3 or n-6.


Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

  • Marion Draheim‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

In malaria, CD4 Th1 and T follicular helper (TFH) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α+ dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10+ CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses.


New Insights into Blood Circulating Lymphocytes in Human Pneumocystis Pneumonia.

  • Eléna Charpentier‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2021‎

The host lymphocyte response is decisive in Pneumocystis pneumonia (PCP) pathophysiology but little is known of the specific roles of lymphocyte subpopulations in this fungal infection. Peripheral NK, NKT, B, TCD4+ and TCD8+ subpopulations were compared by immunophenotyping between 20 patients diagnosed with PCP (PCP(+)] and 20 uninfected immunosuppressed patients (PCP(-)). Among PCP(+) subjects, the lymphocyte populations were also compared between surviving and deceased patients. Low B cell count (<40 cells/µL) was more frequent in PCP(+) than in PCP(-) patients (p = 0.03), while there was no difference for the TCD4 count. Among the PCP(+) group, the 7 deceased patients had lower Th1 (p = 0.02) and Tc1 (p = 0.03) populations, higher Th2 response (p = 0.03), higher effector TCD8 (p < 0.01), lower central memory TCD8 (p = 0.04) and reduced NK cells (p = 0.02) compared with the 13 survivors. Th1/Th2 ratio < 17, CD8 Tc1 < 44%, effector TCD8 < 25%, central memory TCD8 < 4%, NK cells < 50 cells/µL and total lymphocytes < 0.75 G/L were associated with a higher risk of mortality (p = 0.003, p = 0.007, p = 0.0007, p = 0.004, p = 0.02 and p = 0.019, respectively). The traditional analysis of TCD4 and TCD8 populations may be insufficient in the context of PCP. It could be completed by using B cells to predict the risk of PCP, and by using lymphocyte subpopulations or total lymphocyte count, which are easy to obtain in all health care facilities, to evaluate PCP prognosis.


Multiparametric magnetic resonance imaging to characterize cabotegravir long-acting formulation depot kinetics in healthy adult volunteers.

  • Beat M Jucker‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

Cabotegravir long-acting (LA) intramuscular (IM) injection is being investigated for HIV preexposure prophylaxis due to its potent antiretroviral activity and infrequent dosing requirement. A subset of healthy adult volunteers participating in a Phase I study assessing cabotegravir tissue pharmacokinetics underwent serial magnetic resonance imaging (MRI) to assess drug depot localization and kinetics following a single cabotegravir LA IM targeted injection.


Multicompartmental pharmacokinetic evaluation of long-acting cabotegravir in healthy adults for HIV preexposure prophylaxis.

  • Jafar Sadik Shaik‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

Cabotegravir is an integrase strand transfer inhibitor in clinical development as long-acting (LA) injectable HIV preexposure prophylaxis.


Population pharmacokinetics of cabotegravir following administration of oral tablet and long-acting intramuscular injection in adult HIV-1-infected and uninfected subjects.

  • Kelong Han‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

To characterize cabotegravir population pharmacokinetics using data from phase 1, 2 and 3 studies and evaluate the association of intrinsic and extrinsic factors with pharmacokinetic variability.


Epidemiological, Clinical and Laboratory Features of Strongyloidiasis in 69 Attendees at a French Outpatient Clinic.

  • Jean-François Magnaval‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

The present retrospective study analyzed the characteristics of strongyloidiasis in patients who were diagnosed at the Outpatient Clinic of the Department of Parasitology-Mycology, Toulouse, France. Sixty-nine file records were included in the study on the basis of a positive stool examination that used Baermann's method. The prominent epidemiological findings were the presence of former immigrants from Italy or Portugal, veterans from the 1st Indochina war, and autochthonous cases. Almost 1/4 of the patients were asymptomatic. Manifestations of skin allergy were the main clinical feature. Blood eosinophilia was present in 76.8% of the patients, and serum total IgE was ≥150 kIU/L in 79.7%. Immunodiagnosis was achieved from 1990 to 2001 by indirect immunofluorescence (IFAT) that was then replaced with ELISA, both methods using Strongyloides ratti filariform larvae. ELISA was found to be similar to IFAT in terms of specificity but exhibited a greater sensitivity. Patients were primarily treated with albendazole or ivermectin beginning in 1993. Forty-eight patients attended the follow-up consultation. Kinetics of the clinical picture and blood eosinophilia were found to be the most convenient parameters to assess the efficacy of anthelmintic therapy. In conclusion, strongyloidiasis remains a neglected disease in Southwestern France. The resolution of clinical features along with the kinetics of eosinophilia appeared to be the most appropriate parameters to check during the posttreatment follow-up.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: