Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production.

  • Yingying Yao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages.


Bronchial epithelial cells of young and old mice directly regulate the differentiation of Th2 and Th17.

  • Da Liu‎ et al.
  • Bioscience reports‎
  • 2019‎

To determine whether or not house dust mite (HDM) and HDM+lipopolysaccharide (LPS) exposure causes a difference in T-cell subsets from young and old mice. The bronchial epithelial cells (BECs) from young and old mice were divided into three groups (PBS (control), HDM, and HDM+LPS). CD4+ naive T cells from the spleen and lymph nodes were collected after 24 h of co-culture with BECs. The number of Th2 and Th17 cells was elevated in the HDM and HDM+LPS groups compared with the control group; these responses were exacerbated when exposed to HDM+LPS. The number of HDM- and HDM+LPS-specific Th2/Th17 cells in young mice was higher than old mice; however, the Th2:Th17 cell ratio was greater in young mice, whereas the Th17:Th2 cell ratio was greater in old mice. The expression of GATA-3 and RORc was increased in the HDM+LPS and HDM groups compared with the PBS group and exhibited most in HDM+LPS group. The expression of HDM+LPS-specific GATA-3 in young mice was higher, while the expression of HDM+LPS-specific RORc in old mice was higher. Murine BECs directly regulated CD4+ naive T-cell differentiation under allergen exposure.


Hepatic recruitment of CD11b+Ly6C+ inflammatory monocytes promotes hepatic ischemia/reperfusion injury.

  • Peng Song‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

Monocytes infiltrate damaged liver tissue during noninfectious liver injury and often have dual roles, perpetuating inflammation and promoting resolution of inflammation and fibrosis. However, how monocyte subsets distribute and are differentially recruited in the liver remain unclear. In the current study, the subpopulations of infiltrating monocytes were examined following liver ischemia/reperfusion (I/R) injury in mice using flow cytometry. CD11b+Ly6C high (Ly6Chi) cells (inflammatory monocytes) and CD11b+Ly6C low cells (reparative monocytes) were recruited into the liver following I/R injury. Treatment with clodronate‑loaded liposomes, which transiently deplete systemic macrophages, alleviated hepatic damage. Mice genetically deficient in C‑C motif chemokine ligand 2 (CCL2), or its receptor C‑C chemokine receptor 2 (CCR2), exhibited diminished hepatic damage compared with wild‑type mice following I/R, by controlling intrahepatic inflammatory Ly6Chi monocyte accumulation. In addition, the CCR2 specific inhibitor RS504393 alleviated hepatic I/R injury. The results suggest that the CCR2/CCL2 axis has an important role in monocyte infiltration and may represent a novel target for the treatment of liver I/R injury.


Osteoporosis regulation by salubrinal through eIF2α mediated differentiation of osteoclast and osteoblast.

  • Long He‎ et al.
  • Cellular signalling‎
  • 2013‎

Nuclear factor-κB (NF-κB) ligand (RANKL) was shown to induce osteoclast differentiation by increasing the expression of c-Fos, NFATc1 and TRAP. Salubrinal treatment to bone marrow macrophage (BMM) cells, however, significantly blocked NFATc1 expression and osteoclast differentiation by RANKL. Overexpression of NFATc1 further confirmed that NFATc1 is a key factor affected by salubrinal in osteoclast differentiation by RANKL. Unexpectedly, NFATc1 and c-Fos mRNA expressions were not affected by salubrinal, implicating that NFATc1 expression is regulated at a translational stage. In support of this, salubrinal increased the phosphorylation of a translation factor eIF2α, decreasing the global protein synthesis including NFATc1. In contrast, a phosphorylation mutant plasmid pLenti-eIF2α-S51A restored RANKL-induced NFATc1 expression and osteoclast differentiation even in the presence of salubrinal. Furthermore, knockdown of ATF4 significantly reduced salubrinal-induced osteoblast differentiation as evidenced by decreased calcium accumulation and lowered expressions of the osteoblast differentiation markers, alkaline phosphatase and RANKL in MC3T3-E1 osteoblast cells. Salubrinal treatment to co-cultured BMM and MC3T3-E1 cells also showed reduction of osteoclast differentiation. Finally, salubrinal efficiently blocked osteoporosis in mice model treated with RANKL as evidenced by elevated bone mineral density (BMD) and other osteoporosis factors. Collectively, our data indicate that salubrinal could affect the differentiation of both osteoblast and osteoclast, and be developed as an excellent anti-osteoporosis drug. In addition, modulation of ATF4 and NFATc1 expressions through eIF2α phosphorylation could be a valuable target for the treatment of osteoporosis.


Loss of Jak2 impairs endothelial function by attenuating Raf-1/MEK1/Sp-1 signaling along with altered eNOS activities.

  • Ping Yang‎ et al.
  • The American journal of pathology‎
  • 2013‎

A number of inhibitors have been used to dissect the functional relevance of Jak2 in endothelial homeostasis, with disparate results. Given that Jak2 deficiency leads to embryonic lethality, the exact role of Jak2 in the regulation of postnatal endothelial function is yet to be fully elucidated. We generated a model in which Jak2 deficiency can be induced by tamoxifen in adult mice. Loss of Jak2 significantly impaired endothelium-dependent response capacity for vasodilators. Matrigel plug assays indicated a notable decrease in endothelial angiogenic function in Jak2-deficient mice. Studies in a hindlimb ischemic model indicated that Jak2 activity is likely to be a prerequisite for prompt perfusion recovery, based on the concordance of temporal changes in Jak2 expression during the course of ischemic injury and perfusion recovery. A remarkable delay in perfusion recovery, along with reduced capillary and arteriole formation, was observed in Jak2-deficient mice. Antibody array studies indicated that loss of Jak2 led to repressed eNOS expression. In mechanistic studies, Jak2 deficiency attenuated Raf-1/MEK1 signaling, which then reduced activity of Sp-1, an essential transcription factor responsible for eNOS expression. These data are important not only for understanding the exact role that Jak2 plays in endothelial homeostasis, but also for assessing Jak2-based therapeutic strategies in a variety of clinical settings.


Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.

  • Wanping Xu‎ et al.
  • Molecular cell‎
  • 2012‎

Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones.


Gsdma3 regulates hair follicle differentiation via Wnt5a-mediated non-canonical Wnt signaling pathway.

  • Long He‎ et al.
  • Oncotarget‎
  • 2017‎

Hair follicle is a mini-organ that consists of complex but well-organized structures, which are differentiated from hair follicle progenitor or stem cells. How non-canonical Wnt signaling pathway is involved in regulating hair follicle differentiation remains elusive. Here we showed that Wnt5a regulates hair follicle differentiation through an epithelial-mesenchymal interaction mechanism in mice. We first observed that Wnt5a is expressed in the epithelial and dermal papilla cells during hair follicle development and growth. For the upstream of Wnt5a, RT-PCR and immunohistochemistry staining showed that Wnt5a expression is significantly decreased in the Gsdma3-mutant mice in vivo. Overexpression of Gsdma3 results in a significantly increased expression of Wnt5a in the cultured epidermal cells in vitro. We also checked the downstream factors of Wnt5a by adenovirus-mediated overexpression of Wnt5a to the dermal papilla cells isolated from the mouse whisker. We found that overexpression of Wnt5a suppresses canonical Wnt signaling pathway effectors such as β-catenin and Lef1. In addition, genes involved in maintaining cell quiescent state are also significantly decreased in their expression to the DP cells which were treated by Wnt5a. Our study indicates that Wnt5a mediates epithelia-expressed Gsdma3 to influence DP cell behaviors, which in turn regulate hair follicle epithelia differentiation in mice.


Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling.

  • Gina Lee‎ et al.
  • Cell‎
  • 2017‎

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Early initiation of renal replacement treatment in patients with acute kidney injury: A systematic review and meta-analysis.

  • Hongwei Wang‎ et al.
  • Medicine‎
  • 2016‎

Acute kidney injury (AKI) is associated with a substantially increased risk of mortality for many hospitalized patients. It has been suggested that early initiation of renal replacement treatment has a favorable outcome in critically ill patients complicated with AKI. However, results of studies evaluating the effect of early initiation strategy of renal replacement treatment on AKI have been controversial and contradictory. The aim of this meta-analysis is to examine the effect of early initiation of renal replacement treatment on patients with AKI.


Ubc9 deficiency selectively impairs the functionality of common lymphoid progenitors (CLPs) during bone marrow hematopoiesis.

  • Mohammed Abdelssalam Hassan Edrees‎ et al.
  • Molecular immunology‎
  • 2019‎

Hematopoietic development occurs in the bone marrow, and this process begins with hematopoietic stem cells (HSCs). Ubc9 is a unique E2-conjugating enzyme required for SUMOylation, an evolutionarily conserved post-translational modification system. We herein show that a conditional Ubc9 deletion in the hematopoietic system caused decreased thymus weight and reduced lymphocyte to myeloid cell ratio. Importantly, Ubc9 deletion in the hematopoietic system only selectively impaired the development of common lymphoid progenitors (CLPs) in the bone marrow and perturbed their potential to differentiate into lymphocytes, thereby decreasing the number of T/B cells in the periphery. Ubc9 was found to be required for CLP viability, and therefore, Ubc9 deficiency rendered CLPs to undergo apoptosis and attenuated their proliferation. Thus, Ubc9 plays a critical role in the regulation of CLP function during hematopoietic development in the bone marrow.


Genome-Wide Identification and Expression Profile of OSCA Gene Family Members in Triticum aestivum L.

  • Kai Tong‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat.


C/EBPβ Participates in Nerve Trauma-Induced TLR7 Upregulation in Primary Sensory Neurons.

  • Long He‎ et al.
  • Molecular neurobiology‎
  • 2022‎

Nerve trauma-induced toll-like receptor 7 (TLR7) expression level increases in primary sensory neurons in injured dorsal root ganglion (DRG) avails to neuropathic pain, but the reason is still unknown. In the current study, we showed that unilateral lumbar 4 (L4) spinal nerve ligation (SNL) upregulated CCAAT/enhancer-binding protein-β (C/EBPβ) expression in ipsilateral L4 DRG. Preventing this elevation attenuated the SNL-induced upregulation of TLR7 in the ipsilateral L4 DRG and inhibited cold/thermal hyperalgesia and mechanical allodynia. In injected DRG, mimicking nerve trauma-induced C/EBPβ upregulation increased TLR7 levels, augmented responses to cold/thermal/mechanical stimuli, and caused ipsilateral spontaneous pain with no SNL. Mechanistically, SNL upregulated binding of increased C/EBPβ to Tlr7 promoter in ipsilateral L4 DRG. Accorded that C/EBPβ could trigger the activation of Tlr7 promoter and co-expressed with Tlr7 mRNA in individual DRG neurons, our findings strongly suggest the role of C/EBPβ in nerve trauma-mediated TLR7 upregulation in injured primary sensory neurons.


Schisantherin A inhibits cell proliferation by regulating glucose metabolism pathway in hepatocellular carcinoma.

  • Fan Feng‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Schisantherin A (STA) is a traditional Chinese medicine extracted from the plant Schisandra chinensis, which has a wide range of anti-inflammatory, antioxidant, and other pharmacological effects. This study investigates the anti-hepatocellular carcinoma effects of STA and the underlying mechanisms. STA significantly inhibits the proliferation and migration of Hep3B and HCCLM3 cells in vitro in a concentration-dependent manner. RNA-sequencing showed that 77 genes are upregulated and 136 genes are downregulated in STA-treated cells compared with untreated cells. KEGG pathway analysis showed significant enrichment in galactose metabolism as well as in fructose and mannose metabolism. Further gas chromatography-mass spectrometric analysis (GC-MS) confirmed this, indicating that STA significantly inhibits the glucose metabolism pathway of Hep3B cells. Tumor xenograft in nude mice showed that STA has a significant inhibitory effect on tumor growth in vivo. In conclusion, our results indicate that STA can inhibit cell proliferation by regulating glucose metabolism, with subsequent anti-tumor effects, and has the potential to be a candidate drug for the treatment of liver cancer.


Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.).

  • Peng Jin‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticumaestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivumHDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.


Inhibition of osteoclasts differentiation by CDC2-induced NFATc1 phosphorylation.

  • Hye-Min Kim‎ et al.
  • Bone‎
  • 2020‎

Bone homeostasis is regulated by a balance of bone formation and bone resorption; dysregulation of bone homeostasis may cause bone-related diseases (e.g., osteoporosis, osteopetrosis, bone fracture). Members of the nuclear factor of activated T cells (NFAT) family of transcription factors play crucial roles in the regulation of immune system, inflammatory responses, cardiac formation, skeletal muscle development, and bone homeostasis. Of these, NFATc1 is a key transcription factor mediating osteoclast differentiation, which is regulated by phosphorylation by distinct NFAT kinases including casein kinase 1 (CK1), glycogen synthase kinase 3 (GSK3), and dual-specificity tyrosine-phosphorylation-regulated kinases (DYRKs). In this study, we report that cell division control protein 2 homolog (cdc2) is a novel NFAT protein kinase that inhibits NFATc1 activation by direct phosphorylation of the NFATc1 S263 residue. Cdc2 inhibitors such as Roscovitine and BMI-1026 induce reduction of phosphorylation of NFATc1, and this process leads to the inhibition of NFATc1 translocation from the nucleus to the cytoplasm, consequently increasing the nuclear pool of NFATc1. Additionally, the inhibition of cdc2-mediated NFATc1 phosphorylation causes an elevation of osteoclast differentiation or TRAP-positive staining in zebrafish scales. Our results suggest that cdc2 is a novel NFAT protein kinase that negatively regulates osteoclast differentiation.


Prognostic Model of Colorectal Cancer Constructed by Eight Immune-Related Genes.

  • Shuting Wen‎ et al.
  • Frontiers in molecular biosciences‎
  • 2020‎

Colorectal cancer (CRC) is a common malignant tumor of the digestive tract with a high mortality rate. Growing evidence demonstrates that immune-related genes play a prominent role in the occurrence and development of CRC. The aim of this study was to investigate the prognostic value of immune-related genes in CRC.


A Real-Time Evaluation Algorithm for Noncontact Heart Rate Variability Monitoring.

  • Xiangyu Han‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Noncontact vital sign monitoring based on radar has attracted great interest in many fields. Heart Rate Variability (HRV), which measures the fluctuation of heartbeat intervals, has been considered as an important indicator for general health evaluation. This paper proposes a new algorithm for HRV monitoring in which frequency-modulated continuous-wave (FMCW) radar is used to separate echo signals from different distances, and the beamforming technique is adopted to improve signal quality. After the phase reflecting the chest wall motion is demodulated, the acceleration is calculated to enhance the heartbeat and suppress the impact of respiration. The time interval of each heartbeat is estimated based on the smoothed acceleration waveform. Finally, a joint optimization algorithm was developed and is used to precisely segment the acceleration signal for analyzing HRV. Experimental results from 10 participants show the potential of the proposed algorithm for obtaining a noncontact HRV estimation with high accuracy. The proposed algorithm can measure the interbeat interval (IBI) with a root mean square error (RMSE) of 14.9 ms and accurately estimate HRV parameters with an RMSE of 3.24 ms for MEAN (the average value of the IBI), 4.91 ms for the standard deviation of normal to normal (SDNN), and 9.10 ms for the root mean square of successive differences (RMSSD). These results demonstrate the effectiveness and feasibility of the proposed method in emotion recognition, sleep monitoring, and heart disease diagnosis.


Metabolic Risk Profile and Graft Function Deterioration 2 Years After Kidney Transplant.

  • Jiayi Yan‎ et al.
  • JAMA network open‎
  • 2023‎

Studies exploring the association of body weight and metabolic status with graft function deterioration (GFD) after kidney transplantation have produced inconsistent findings. Few studies have examined whether metabolically healthy overweight or obesity (MHO) may contribute to GFD.


Protuboxepin A, a marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment in tumor cells.

  • Yukihiro Asami‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2012‎

Previously we reported the identification of a new oxepin-containing diketopiperazine-type marine fungal metabolite, named protuboxepin A which showed antiproliferative activity in several cancer cell lines. In this study we elucidated the mechanism by which protuboxepin A induces cancer cell growth inhibition. Here we report that protuboxepin A induced round-up morphology, M phase arrest, and an increase in the subG(1) population in tumor cells in a dose dependent manner. Our investigations revealed that protuboxepin A directly binds to α,β-tubulin and stabilizes tubulin polymerization thus disrupting microtubule dynamics. This disruption leads to chromosome misalignment and metaphase arrest which induces apoptosis in cancer. Overall, we identified protuboxepin A as a microtubule-stabilizing agent which has a distinctly different chemical structure from previously reported microtubule inhibitors. These results indicate that protuboxepin A has a potential of being a new and effective anti-cancer drug.


A rapid and sensitive UPLC-MS/MS method for the determination of flibanserin in rat plasma: application to a pharmacokinetic study.

  • Long He‎ et al.
  • BMC chemistry‎
  • 2019‎

In this work, we aim to develop and validate a fast, simple, and sensitive method for the quantitative determination of flibanserin and the exploration of its pharmacokinetics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: