Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 60 papers

Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma.

  • Roberto Jose Diaz‎ et al.
  • Oncotarget‎
  • 2015‎

Medulloblastoma comprises four molecular subgroups of which Group 3 medulloblastoma is characterized by MYC amplification and MYC overexpression. Lymphoma cells expressing high levels of MYC are susceptible to apoptosis following treatment with inhibitors of mitosis. One of the key regulatory kinases involved in multiple stages of mitosis is Aurora kinase B. We hypothesized that medulloblastoma cells that overexpress MYC would be uniquely sensitized to the apoptotic effects of Aurora B inhibition. The specific inhibition of Aurora kinase B was achieved in MYC- overexpressing medulloblastoma cells with AZD1152-HQPA. MYC overexpression sensitized medulloblastoma cells to cell death upon Aurora B inhibition. This process was found to be independent of endoreplication. Using both flank and intracranial cerebellar xenografts we demonstrate that tumors formed from MYC-overexpressing medulloblastoma cells show a response to Aurora B inhibition including growth impairment and apoptosis induction. Lastly, we show the distribution of AZD1152-HQPA within the mouse brain and the ability to inhibit intracranial tumor growth and prolong survival in mice bearing tumors formed from MYC-overexpressing medulloblastoma cells. Our results suggest the potential for therapeutic application of Aurora kinase B inhibitors in the treatment of Group 3 medulloblastoma.


Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors.

  • Kohei Fukuoka‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Extensive molecular analyses of ependymal tumors have revealed that supratentorial and posterior fossa ependymomas have distinct molecular profiles and are likely to be different diseases. The presence of C11orf95-RELA fusion genes in a subset of supratentorial ependymomas (ST-EPN) indicated the existence of molecular subgroups. However, the pathogenesis of RELA fusion-negative ependymomas remains elusive. To investigate the molecular pathogenesis of these tumors and validate the molecular classification of ependymal tumors, we conducted thorough molecular analyses of 113 locally diagnosed ependymal tumors from 107 patients in the Japan Pediatric Molecular Neuro-Oncology Group. All tumors were histopathologically reviewed and 12 tumors were re-classified as non-ependymomas. A combination of RT-PCR, FISH, and RNA sequencing identified RELA fusion in 19 of 29 histologically verified ST-EPN cases, whereas another case was diagnosed as ependymoma RELA fusion-positive via the methylation classifier (68.9%). Among the 9 RELA fusion-negative ST-EPN cases, either the YAP1 fusion, BCOR tandem duplication, EP300-BCORL1 fusion, or FOXO1-STK24 fusion was detected in single cases. Methylation classification did not identify a consistent molecular class within this group. Genome-wide methylation profiling successfully sub-classified posterior fossa ependymoma (PF-EPN) into PF-EPN-A (PFA) and PF-EPN-B (PFB). A multivariate analysis using Cox regression confirmed that PFA was the sole molecular marker which was independently associated with patient survival. A clinically applicable pyrosequencing assay was developed to determine the PFB subgroup with 100% specificity using the methylation status of 3 genes, CRIP1, DRD4 and LBX2. Our results emphasized the significance of molecular classification in the diagnosis of ependymomas. RELA fusion-negative ST-EPN appear to be a heterogeneous group of tumors that do not fall into any of the existing molecular subgroups and are unlikely to form a single category.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis.

  • Kuniharu Matsuno‎ et al.
  • Free radical biology & medicine‎
  • 2012‎

The functional significance of NOX1/NADPH oxidase in the heart has not been explored due to its low expression relative to other NOX homologs identified so far. We aimed to clarify the role of NOX1/NADPH oxidase in the septic heart by utilizing mice deficient in the Nox1 gene (Nox1(-/Y)). Sepsis was induced by intraperitoneal administration of lipopolysaccharides (LPS: 25mg/kg) or cecal ligation and puncture (CLP) surgery. A marked elevation of NOX1 mRNA was demonstrated in cardiac tissue, which was accompanied by increased production of reactive oxygen species (ROS). In Nox1(-/Y) treated with LPS, cardiac dysfunction and survival were significantly improved compared with wild-type mice (Nox1(+/Y)) treated with LPS. Concomitantly, LPS-induced cardiomyocyte apoptosis and activation of caspase-3 were alleviated in Nox1(-/Y). The level of phosphorylated Akt in cardiac tissue was significantly lowered in Nox1(+/Y) but not in Nox1(-/Y) treated with LPS or that underwent CLP surgery. Increased oxidation of cysteine residues of Akt and enhanced interaction of Akt with protein phosphatase 2A (PP2A), a major phosphatase implicated in the dephosphorylation of Akt, were demonstrated in LPS-treated Nox1(+/Y). These responses to LPS were significantly attenuated in Nox1(-/Y). Taken together, ROS derived from NOX1/NADPH oxidase play a pivotal role in endotoxin-induced cardiomyocyte apoptosis by increasing oxidation of Akt and subsequent dephosphorylation by PP2A. Marked up-regulation of NOX1 may affect the risk of mortality under systemic inflammatory conditions.


TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


Antitumor effect of fibrin glue containing temozolomide against malignant glioma.

  • Shigeo Anai‎ et al.
  • Cancer science‎
  • 2014‎

Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma.


CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.

  • Tara Spence‎ et al.
  • Acta neuropathologica‎
  • 2014‎

Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.


Intertumoral Heterogeneity within Medulloblastoma Subgroups.

  • Florence M G Cavalli‎ et al.
  • Cancer cell‎
  • 2017‎

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Monocyte chemoattractant protein 1 expression and proliferation in primary central nervous system lymphoma.

  • Yoshinobu Takahashi‎ et al.
  • Oncology letters‎
  • 2017‎

Whether the poor prognosis of primary central nervous system lymphoma (PCNSL) compared with systemic diffuse large B cell lymphoma (DLBCL) is attributable to the immune privilege of the intracerebral location or to intrinsic differences in the biological characteristics of two types of lymphoma remains unclear. Monocyte chemoattractant protein 1 (MCP-1) is essential to support tumor cell survival and growth, and the present study aimed to compare MCP-1 expression in PCNSL and peripheral DLBCL. The present study included 19 patients with PCNSL and 16 patients with DLBCL, all of whom had tissue diagnosis and lymphoma tissue samples available for analysis. Histology included immunohistochemistry using antibodies against a panel of lymphoma markers, antibodies specific to MCP-1, and antibodies specific to tumor-associated macrophages. MCP-1 expression was quantified using immunostaining scoring. RNA extraction and reverse transcription-quantitative polymerase chain reaction were used to determine MCP-1 mRNA expression. In addition, a human brain-derived lymphoma cell line, HKBML, was stimulated with MCP-1 and cell proliferation was measured by 5-bromo-2'-deoxyuridine incorporation. The expression levels of MCP-1 mRNA and MCP-1 protein were significantly increased in PCNSL compared with peripheral DLBCL. MCP-1 induced tyrosine phosphorylation of mitogen-activated protein kinase in HKBML cells, as analyzed by western blotting. The results of the present study indicated that MCP-1 expression in PCNSL promoted cell proliferation in an autocrine manner.


Comprehensive Analysis of Hypermutation in Human Cancer.

  • Brittany B Campbell‎ et al.
  • Cell‎
  • 2017‎

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia.

  • Atsushi Hoshino‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2012‎

Inhibition of tumor suppressor p53 is cardioprotective against ischemic injury and provides resistance to subsequent cardiac remodeling. We investigated p53-mediated expansion of ischemic damage with a focus on mitochondrial integrity in association with autophagy and apoptosis. p53(-/-) heart showed that autophagic flux was promoted under ischemia without a change in cardiac tissue ATP content. Electron micrographs revealed that ischemic border zone in p53(-/-) mice had 5-fold greater numbers of autophagic vacuoles containing mitochondria, indicating the occurrence of mitophagy, with an apparent reduction of abnormal mitochondria compared with those in WT mice. Analysis of autophagic mediators acting downstream of p53 revealed that TIGAR (TP53-induced glycolysis and apoptosis regulator) was exclusively up-regulated in ischemic myocardium. TIGAR(-/-) mice exhibited the promotion of mitophagy followed by decrease of abnormal mitochondria and resistance to ischemic injury, consistent with the phenotype of p53(-/-) mice. In p53(-/-) and TIGAR(-/-) ischemic myocardium, ROS production was elevated and followed by Bnip3 activation which is an initiator of mitophagy. Furthermore, the activation of Bnip3 and mitophagy due to p53/TIGAR inhibition were reversed with antioxidant N-acetyl-cysteine, indicating that this adaptive response requires ROS signal. Inhibition of mitophagy using chloroquine in p53(-/-) or TIGAR(-/-) mice exacerbated accumulation of damaged mitochondria to the level of wild-type mice and attenuated cardioprotective action. These findings indicate that p53/TIGAR-mediated inhibition of myocyte mitophagy is responsible for impairment of mitochondrial integrity and subsequent apoptosis, the process of which is closely involved in p53-mediated ventricular remodeling after myocardial infarction.


MEK Inhibitors Reverse Growth of Embryonal Brain Tumors Derived from Oligoneural Precursor Cells.

  • Katarzyna Modzelewska‎ et al.
  • Cell reports‎
  • 2016‎

Malignant brain tumors are the leading cause of cancer-related deaths in children. Primitive neuroectodermal tumors of the CNS (CNS-PNETs) are particularly aggressive embryonal tumors of unknown cellular origin. Recent genomic studies have classified CNS-PNETs into molecularly distinct subgroups that promise to improve diagnosis and treatment; however, the lack of cell- or animal-based models for these subgroups prevents testing of rationally designed therapies. Here, we show that a subset of CNS-PNETs co-express oligoneural precursor cell (OPC) markers OLIG2 and SOX10 with coincident activation of the RAS/MAPK (mitogen-activated protein kinase) pathway. Modeling NRAS activation in embryonic OPCs generated malignant brain tumors in zebrafish that closely mimic the human oligoneural/NB-FOXR2 CNS-PNET subgroup by histology and comparative oncogenomics. The zebrafish CNS-PNET model was used to show that MEK inhibitors selectively eliminate Olig2+/Sox10+ CNS-PNET tumors in vivo without impacting normal brain development. Thus, MEK inhibitors represent a promising rationally designed therapy for children afflicted with oligoneural/NB-FOXR2 CNS-PNETs.


Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma.

  • Liana Nobre‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses.


Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency.

  • Anirban Das‎ et al.
  • Nature medicine‎
  • 2022‎

Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion-deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10-100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in 'immunologically cold' tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy.


Widespread hypertranscription in aggressive human cancers.

  • Matthew Zatzman‎ et al.
  • Science advances‎
  • 2022‎

Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. Hypertranscription's prevalence, underlying drivers, and prognostic significance are undefined in primary human cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide fundamental insights into gene dysregulation across human cancers and may prove useful in identifying patients who would benefit from novel therapies.


Low tumor cell content predicts favorable prognosis in germinoma patients.

  • Hirokazu Takami‎ et al.
  • Neuro-oncology advances‎
  • 2021‎

Germinoma preferentially occurs in pediatric and young adult age groups. Although they are responsive to treatment with chemotherapy and radiation, the treatment may cause long-term sequelae in their later lives. Here, we searched for clinical and histopathological features to predict the prognosis of germinoma and affect treatment response.


Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform.

  • Ben Ho‎ et al.
  • Neuro-oncology advances‎
  • 2024‎

Despite genomic simplicity, recent studies have reported at least 3 major atypical teratoid rhabdoid tumor (ATRT) subgroups with distinct molecular and clinical features. Reliable ATRT subgrouping in clinical settings remains challenging due to a lack of suitable biological markers, sample rarity, and the relatively high cost of conventional subgrouping methods. This study aimed to develop a reliable ATRT molecular stratification method to implement in clinical settings.


Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics.

  • Lindsey M Hoffman‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

Diffuse intrinsic pontine glioma (DIPG) and midline high-grade glioma (mHGG) are lethal childhood brain tumors. Spatial genomic heterogeneity has been well-described in adult HGG but has not been comprehensively characterized in pediatric HGG. We performed whole exome sequencing on 38-matched primary, contiguous, and metastatic tumor sites from eight children with DIPG (n = 7) or mHGG (n = 1) collected using a unique MRI-guided autopsy protocol. Validation was performed using Sanger sequencing, Droplet Digital polymerase-chain reaction, immunohistochemistry, and fluorescent in-situ hybridization.


Expression of GLUT1 in Pseudopalisaded and Perivascular Tumor Cells Is an Independent Prognostic Factor for Patients With Glioblastomas.

  • Satoru Komaki‎ et al.
  • Journal of neuropathology and experimental neurology‎
  • 2019‎

Glioblastomas are highly aggressive brain tumors with a particularly poor prognosis. Glucose transporter-1 (GLUT1/SLC2A1), a uniporter that is expressed by various carcinomas and may be involved in malignant neoplasm glycometabolism, may also be related to prognosis in glioblastomas. GLUT1 is essential to central nervous system glycometabolism. To clarify the exact role of GLUT1 in glioblastoma, we assessed the expression and localization of GLUT1 in patient samples by immunohistochemistry and in situ RNA hybridization. This revealed that GLUT1 was mainly expressed on perivascular and pseudopalisaded tumor cell membranes. All samples expressed GLUT1 to some degree, with 30.8% showing stronger staining. On the basis of these data, samples were divided into high and low expression groups, although SLC2A1 mRNA expression was also higher in the high GLUT1 expression group. Kaplan-Meier survival curves revealed that high GLUT1 expression associated with lower overall survival (log-rank test, p = 0.001) and worse patient prognoses (p = 0.001). Finally, MIB-1 staining was stronger in high GLUT1 expression samples (p = 0.0004), suggesting a link with proliferation. We therefore hypothesize that GLUT1 expression in glioblastomas may enhance glycolysis, affecting patient prognosis. Examination of GLUT1 in patients with glioblastomas may provide a new prognostic tool to improve outcome.


Household spraying in cholera outbreaks: Insights from three exploratory, mixed-methods field effectiveness evaluations.

  • Karin Gallandat‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Household spraying is a commonly implemented, yet an under-researched, cholera response intervention where a response team sprays surfaces in cholera patients' houses with chlorine. We conducted mixed-methods evaluations of three household spraying programs in the Democratic Republic of Congo and Haiti, including 18 key informant interviews, 14 household surveys and observations, and 418 surface samples collected before spraying, 30 minutes and 24 hours after spraying. The surfaces consistently most contaminated with Vibrio cholerae were food preparation areas, near the patient's bed and the latrine. Effectiveness varied between programs, with statistically significant reductions in V. cholerae concentrations 30 minutes after spraying in two programs. Surface contamination after 24 hours was variable between households and programs. Program challenges included difficulty locating households, transportation and funding limitations, and reaching households quickly after case presentation (disinfection occurred 2-6 days after reported cholera onset). Program advantages included the concurrent deployment of hygiene promotion activities. Further research is indicated on perception, recontamination, cost-effectiveness, viable but nonculturable V. cholerae, and epidemiological coverage. We recommend that, if spraying is implemented, spraying agents should: disinfect surfaces systematically until wet using 0.2/2.0% chlorine solution, including kitchen spaces, patients' beds, and latrines; arrive at households quickly; and, concurrently deploy hygiene promotion activities.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: