Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA.

  • Kristin E Sloyer‎ et al.
  • PloS one‎
  • 2019‎

Epizootic hemorrhagic disease (EHD) is a viral arthropod-borne disease affecting wild and domestic ruminants, caused by infection with epizootic hemorrhagic disease virus (EHDV). EHDV is transmitted to vertebrate animal hosts by biting midges in the genus Culicoides Latreille (Diptera: Ceratopogonidae). Culicoides sonorensis Wirth and Jones is the only confirmed vector of EHDV in the United States but is considered rare in Florida and not sufficiently abundant to support EHDV transmission. This study used ecological niche modeling to map the potential geographical distributions and associated ecological variable space of four Culicoides species suspected of transmitting EHDV in Florida, including Culicoides insignis Lutz, Culicoides stellifer (Coquillett), Culicoides debilipalpis Hoffman and Culicoides venustus Lutz. Models were developed with the Genetic Algorithm for Rule Set Production in DesktopGARP v1.1.3 using species occurrence data from field sampling along with environmental variables from WorldClim and Trypanosomiasis and Land use in Africa. For three Culicoides species (C. insignis, C. stellifer and C. debilipalpis) 96-98% of the presence points were predicted across the Florida landscape (63.8% - 72.5%). For C. venustus, models predicted 98.00% of presence points across 27.4% of Florida. Geographic variations were detected between species. Culicoides insignis was predicted to be restricted to peninsular Florida, and in contrast, C. venustus was predicted to be primarily in north Florida and the panhandle region. Culicoides stellifer and C. debilipalpis were predicted nearly statewide. Environmental conditions also differed by species, with some species' ranges predicted by more narrow ranges of variables than others. The Normalized Difference Vegetation Index (NDVI) was a major predictor of C. venustus and C. insignis presence. For C. stellifer, Land Surface Temperature, Middle Infrared were the most limiting predictors of presence. The limiting variables for C. debilipalpis were NDVI Bi-Annual Amplitude and NDVI Annual Amplitude at 22.5% and 28.1%, respectively. The model outputs, including maps and environmental variable range predictions generated from these experiments provide an important first pass at predicting species of veterinary importance in Florida. Because EHDV cannot exist in the environment without the vector, model outputs can be used to estimate the potential risk of disease for animal hosts across Florida. Results also provide distribution and habitat information useful for integrated pest management practices.


Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus.

  • Bethany L McGregor‎ et al.
  • Viruses‎
  • 2021‎

Oropouche virus (OROV), a vector-borne Orthobunyavirus circulating in South and Central America, causes a febrile illness with high rates of morbidity but with no documented fatalities. Oropouche virus is transmitted by numerous vectors, including multiple genera of mosquitoes and Culicoides biting midges in South America. This study investigated the vector competence of three North American vectors, Culex tarsalis, Culex quinquefasciatus, and Culicoides sonorensis, for OROV. Cohorts of each species were fed an infectious blood meal containing 6.5 log10 PFU/mL OROV and incubated for 10 or 14 days. Culex tarsalis demonstrated infection (3.13%) but not dissemination or transmission potential at 10 days post infection (DPI). At 10 and 14 DPI, Cx. quinquefasciatus demonstrated 9.71% and 19.3% infection, 2.91% and 1.23% dissemination, and 0.97% and 0.82% transmission potential, respectively. Culicoides sonorensis demonstrated 86.63% infection, 83.14% dissemination, and 19.77% transmission potential at 14 DPI. Based on these data, Cx. tarsalis is unlikely to be a competent vector for OROV. Culex quinquefasciatus demonstrated infection, dissemination, and transmission potential, although at relatively low rates. Culicoides sonorensis demonstrated high infection and dissemination but may have a salivary gland barrier to the virus. These data have implications for the spread of OROV in the event of a North American introduction.


Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA.

  • Bethany L McGregor‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Vesicular stomatitis (VS) is a reportable viral disease which affects horses, cattle, and pigs in the Americas. Outbreaks of vesicular stomatitis virus New Jersey serotype (VSV-NJ) in the United States typically occur on a 5-10-year cycle, usually affecting western and southwestern states. In 2019-2020, an outbreak of VSV Indiana serotype (VSV-IN) extended eastward into the states of Kansas and Missouri for the first time in several decades, leading to 101 confirmed premises in Kansas and 37 confirmed premises in Missouri. In order to investigate which vector species contributed to the outbreak in Kansas, we conducted insect surveillance at two farms that experienced confirmed VSV-positive cases, one each in Riley County and Franklin County. Centers for Disease Control and Prevention miniature light traps were used to collect biting flies on the premises. Two genera of known VSV vectors, Culicoides biting midges and Simulium black flies, were identified to species, pooled by species, sex, reproductive status, and collection site, and tested for the presence of VSV-IN RNA by RT-qPCR. In total, eight positive pools were detected from Culicoides sonorensis (1), Culicoides stellifer (3), Culicoides variipennis (1), and Simulium meridionale (3). The C. sonorensis- and C. variipennis-positive pools were from nulliparous individuals, possibly indicating transovarial or venereal transmission as the source of virus. This is the first report of VSV-IN in field caught C. stellifer and the first report of either serotype in S. meridionale near outbreak premises. These results improve our understanding of the role midges and black flies play in VSV epidemiology in the United States and broadens the scope of vector species for targeted surveillance and control.


Habitat type and host grazing regimen influence the soil microbial diversity and communities within potential biting midge larval habitats.

  • Saraswoti Neupane‎ et al.
  • Environmental microbiome‎
  • 2023‎

Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties.


Vector Competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype 2 Strains from Canada and Florida.

  • Bethany L McGregor‎ et al.
  • Viruses‎
  • 2019‎

Epizootic hemorrhagic disease virus (EHDV), an Orbivirus transmitted by Culicoides spp. vectors, is represented by seven serotypes and numerous strains worldwide. While studies comparing vector competence between serotypes exist, studies between viral strains are lacking. In this study, we examined the rates of infection, dissemination, and transmission of two strains of EHDV-2 orally fed to the known vector, Culicoides sonorensis Wirth & Jones. Culicoides sonorensis cohorts were fed an infectious blood meal containing EHDV-2 strains from either Alberta, Canada (Can-Alberta) or Florida (5.5 log10 PFUe/mL) and tested for the vector's susceptibility to infection and dissemination. In addition, transmission rates of the virus were assessed and compared using capillary tube and honey card methods. Our results show that the Florida strain had higher infection and dissemination rates than the Can-Alberta strain in spite of the Florida strain having significantly lower viral titers in C. sonorensis bodies, legs, and saliva than the Can-Alberta strain. Overall transmission rates were not significantly different between the two strains but varied significantly between the methods used. These findings suggest that the consequences of EHDV infection in C. sonorensis vary between virus strains and have huge implications in future vector competence studies involving Culicoides species and Orbiviruses.


Field data implicating Culicoides stellifer and Culicoides venustus (Diptera: Ceratopogonidae) as vectors of epizootic hemorrhagic disease virus.

  • Bethany L McGregor‎ et al.
  • Parasites & vectors‎
  • 2019‎

Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus of veterinary importance which is transmitted by biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to ruminants. Culicoides sonorensis Wirth & Jones, the only confirmed vector of EHDV in the USA, is rare in the southeastern states where transmission persists, suggesting that other Culicoides species transmit EHDV in this region. The present study aimed to determine which Culicoides species transmitted EHDV in Florida and Alabama, two states in the southeastern USA. Viral RNA was detected in field-collected midges using molecular methods. These data are presented alongside data on Culicoides blood meal analysis, white-tailed deer (Odocoileus virginianus) aspiration, and seasonality to demonstrate an interaction between potential vector species and EHDV hosts.


Uncovering Novel Prognostic Factors of Sudden Sensorineural Hearing Loss by Whole-Genome Sequencing of Cell-Free DNA.

  • Anni Yang‎ et al.
  • The journal of international advanced otology‎
  • 2022‎

Sudden sensorineural hearing loss is a common disease with several etiologic hypotheses, such as infection, vascular occlusion, inflammation, oxidative stress, etc. Studies have reported that the concentration of cell-free DNA in plasma will elevate in these situations. Former studies have reported that the whole-genome sequencing of cell-free DNA has high accuracy and sensitivity in inferring gene expressions. In this study, we plan to use the whole-genome sequencing of cell-free DNA to uncover novel prognostic factors of sudden sensorineural hearing loss and provide new insight into the clinical application of cell-free DNA.


Integrating Spatiotemporal Epidemiology, Eco-Phylogenetics, and Distributional Ecology to Assess West Nile Disease Risk in Horses.

  • John M Humphreys‎ et al.
  • Viruses‎
  • 2021‎

Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in humans, horses, and some bird species. Since the initial introduction of WNV to the United States (US), approximately 30,000 horses have been impacted by West Nile neurologic disease and hundreds of additional horses are infected each year. Research describing the drivers of West Nile disease in horses is greatly needed to better anticipate the spatial and temporal extent of disease risk, improve disease surveillance, and alleviate future economic impacts to the equine industry and private horse owners. To help meet this need, we integrated techniques from spatiotemporal epidemiology, eco-phylogenetics, and distributional ecology to assess West Nile disease risk in horses throughout the contiguous US. Our integrated approach considered horse abundance and virus exposure, vector and host distributions, and a variety of extrinsic climatic, socio-economic, and environmental risk factors. Birds are WNV reservoir hosts, and therefore we quantified avian host community dynamics across the continental US to show intra-annual variability in host phylogenetic structure and demonstrate host phylodiversity as a mechanism for virus amplification in time and virus dilution in space. We identified drought as a potential amplifier of virus transmission and demonstrated the importance of accounting for spatial non-stationarity when quantifying interaction between disease risk and meteorological influences such as temperature and precipitation. Our results delineated the timing and location of several areas at high risk of West Nile disease and can be used to prioritize vaccination programs and optimize virus surveillance and monitoring.


The Effect of Fluctuating Incubation Temperatures on West Nile Virus Infection in Culex Mosquitoes.

  • Bethany L McGregor‎ et al.
  • Viruses‎
  • 2021‎

Temperature plays a significant role in the vector competence, extrinsic incubation period, and intensity of infection of arboviruses within mosquito vectors. Most laboratory infection studies use static incubation temperatures that may not accurately reflect daily temperature ranges (DTR) to which mosquitoes are exposed. This could potentially compromise the application of results to real world scenarios. We evaluated the effect of fluctuating DTR versus static temperature treatments on the infection, dissemination, and transmission rates and viral titers of Culex tarsalis and Culex quinquefasciatus mosquitoes for West Nile virus. Two DTR regimens were tested including an 11 and 15 °C range, both fluctuating around an average temperature of 28 °C. Overall, no significant differences were found between DTR and static treatments for infection, dissemination, or transmission rates for either species. However, significant treatment differences were identified for both Cx. tarsalis and Cx. quinquefasciatus viral titers. These effects were species-specific and most prominent later in the infection. These results indicate that future studies on WNV infections in Culex mosquitoes should consider employing realistic DTRs to reflect interactions most accurately between the virus, vector, and environment.


Comparative Genomics Reveal the Utilization Ability of Variable Carbohydrates as Key Genetic Features of Listeria Pathogens in Their Pathogenic Lifestyles.

  • Qunfeng Lu‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

L. monocytogenes and L. ivanovii, the only two pathogens of Listeria, can survive in various environments, having different pathogenic characteristics. However, the genetic basis of their excellent adaptability and differences in pathogenicity has still not been completely elucidated.


Vector Competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype-2.

  • Bethany L McGregor‎ et al.
  • Viruses‎
  • 2021‎

Epizootic hemorrhagic disease virus (EHDV; family Reoviridae, genus Orbivirus) is an arthropod-borne virus of ungulates, primarily white-tailed deer in North America. Culicoides sonorensis, the only confirmed North American vector of EHDV, is rarely collected from Florida despite annual virus outbreaks. Culicoides insignis is an abundant species in Florida and is also a confirmed vector of the closely related Bluetongue virus. In this study, oral challenge of C. insignis was performed to determine vector competence for EHDV serotype-2. Field-collected female midges were provided bovine blood spiked with three different titers of EHDV-2 (5.05, 4.00, or 2.94 log10PFUe/mL). After an incubation period of 10 days or after death, bodies and legs were collected. Saliva was collected daily from all females from 3 days post feeding until their death using honey card assays. All samples were tested for EHDV RNA using RT-qPCR. Our results suggest that C. insignis is a weakly competent vector of EHDV-2 that can support a transmissible infection when it ingests a high virus titer (29% of midges had virus positive saliva when infected at 5.05 log10PFUe/mL), but not lower virus titers. Nevertheless, due to the high density of this species, particularly in peninsular Florida, it is likely that C. insignis plays a role in the transmission of EHDV-2.


Watershed carbon yield derived from gauge observations and river network connectivity in the United States.

  • Han Qiu‎ et al.
  • Scientific data‎
  • 2023‎

River networks play a critical role in the global carbon cycle. Although global/continental scale riverine carbon cycle studies demonstrate the significance of rivers and streams for linking land and coastal regions, the lack of spatially distributed riverine carbon load data represents a gap for quantifying riverine carbon net gain or net loss in different regions, understanding mechanisms and factors that influence the riverine carbon cycle, and testing simulations of aquatic carbon cycle models at fine scales. Here, we (1) derive the riverine load of particulate organic carbon (POC) and dissolved organic carbon (DOC) for over 1,000 hydrologic stations across the Conterminous United States (CONUS) and (2) use the river network connectivity information for over 80,000 catchment units within the National Hydrography Dataset Plus (NHDPlus) to estimate riverine POC and DOC net gain or net loss for watersheds controlled between upstream-downstream hydrologic stations. The new riverine carbon load and watershed net gain/loss represent a unique contribution to support future studies for better understanding and quantification of riverine carbon cycles.


Vertical stratification of Culicoides biting midges at a Florida big game preserve.

  • Bethany L McGregor‎ et al.
  • Parasites & vectors‎
  • 2018‎

Many important vector arthropods are known to stratify vertically in forest environments, a phenomenon which has important implications for vector-borne disease transmission and vector control. Culicoides Latreille biting midges (Diptera: Ceratopogonidae) have been documented using the forest canopy; however, studies of this phenomenon are lacking for many Culicoides species found in great abundance in the state of Florida, USA, some of which have been implicated as suspected vectors of hemorrhagic diseases of white-tailed deer. The present study aimed to determine whether common Culicoides species in Florida stratify vertically and to determine whether strata used by midges corresponded to host use.


Exploring environmental coverages of species: a new variable contribution estimation methodology for rulesets from the genetic algorithm for rule-set prediction.

  • Anni Yang‎ et al.
  • PeerJ‎
  • 2020‎

Variable contribution estimation for, and determination of variable importance within, ecological niche models (ENMs) remain an important area of research with continuing challenges. Most ENM algorithms provide normally exhaustive searches through variable space; however, selecting variables to include in models is a first challenge. The estimation of the explanatory power of variables and the selection of the most appropriate variable set within models can be a second challenge. Although some ENMs incorporate the variable selection rubric inside the algorithms, there is no integrated rubric to evaluate the variable importance in the Genetic Algorithm for Ruleset Production (GARP). Here, we designed a novel variable selection methodology based on the rulesets generated from a GARP experiment. The importance of the variables in a GARP experiment can be estimated based on the consideration of the prevalence of each environmental variable in the dominant presence rules of the best subset of models and its coverage. We tested the performance of this variable selection method based on simulated species with both weak and strong responses to simulated environmental covariates. The variable selection method generally performed well during the simulations with over 2/3 of the trials correctly identifying most covariates. We then predict the distribution of Toxostoma rufum (a bird with a cosmopolitan distribution) in the continental United States (US) and apply our variable selection procedure as a real-world example. We found that the distribution of T. rufum could be accurately modeled with 13 or 10 of 21 variables, using an UI cutoff of 0.5 or 0.25, respectively, arriving at parsimonious environmental coverages with good model accuracy. We also provide tools to simulate species distributions for testing ENM approaches using R.


Genetic mutation of SLC6A20 (c.1072T > C) in a family with nephrolithiasis: A case report.

  • Menglei Jv‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2023‎

Nephrolithiasis is a highly prevalent disease worldwide that is associated with significant suffering, renal failure, and cost for the healthcare system. A patient with nephrolithiasis was found to have SLC6A20 variation. SLC6A20 gene in human is located on chromosome 3p21.3, which is a member of SLC6 family of membrane transporters and the product of this gene expression is transporter protein of sub-amino acid transporter system. The previous studies have reported that the mutation of SLC6A20 may cause hyperglycinuria or iminoglycinuria which may lead to nephrolithiasis. The object was to investigate the relationship between nephrolithiasis and SLC6A20 through pedigree genetic analysis. To explore whether the SLC6A20 mutation can cause hereditary nephrolithiasis, and provide evidence for further research. The urine and blood were collected from the patients for compositional analysis. DNA sequencing was applied to analyze the gene mutation. Labial gland and kidney biopsy were conducted for pathological analysis. As a result we reported a rare family case of nephrolithiasis accompanied by primary Sjogren's syndrome and investigated it by examining the family members with whole exome gene sequencing technology and detecting 20 different amino acids and 132 kinds of organic acids in the urine with gas chromatography-mass spectrometry. We discovered that the proband and her mother had hyperglycinuria and the proband (Ⅱ2), her sister (Ⅱ3), and mother (Ⅰ1) were found to carry the SLC6A20 gene exon NM_020208.3 sequence c.1072T > C heterozygous mutation, and the other family members (Ⅰ2, Ⅱ1, Ⅱ4, Ⅲ1, Ⅲ2) did not carry the genetic mutation. As a conclusion, the heterozygous mutation of SLC6A20 (c.1072T > C) might be contributed to hyperglycinuria and the formation of nephrolithiasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: