Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Foot-and-Mouth Disease Virus-Associated Abortion and Vertical Transmission following Acute Infection in Cattle under Natural Conditions.

  • Rajeev Ranjan‎ et al.
  • PloS one‎
  • 2016‎

Foot-and-mouth disease (FMD) is a highly contagious and economically important viral disease of cloven-hoofed animals, including domestic and wild host species. During recent FMD outbreaks in India, spontaneous abortions were reported amongst FMD-affected and asymptomatic cows. The current study was an opportunistic investigation of these naturally occurring bovine abortions to assess causality of abortion and vertical transmission of FMDV from infected cows to fetuses. For this purpose, fetal tissue samples of eight abortuses (heart, liver, kidney, spleen, palatine tonsil, umbilical cord, soft palate, tongue, lungs, and submandibular lymph node) were collected and screened by various detection methods, including viral genome detection, virus isolation, and immunomicroscopy. Amongst these cases, gross pathological changes were observed in 3 abortuses. Gross pathological findings included blood-tinged peritoneal and pleural effusions and myocarditis. Hearts of infected calves had mild to moderate degeneration and necrosis of the myocardium with moderate infiltration by mixed inflammatory cells. Localization of FMDV antigen was demonstrated in lungs and soft palate by immunomicroscopy. FMDV serotype O viral genome was recovered from 7 of 8 cases. Infectious FMDV serotype O was rescued by chemical transfection of the total RNA extracted from three soft palate samples and was sequenced to confirm 100% identity of the VP1 (capsid) coding region with isolates collected from infected cattle during the acute phase of infection. Based upon these findings, it may be concluded that FMDV-associated abortion occurred among the infected pregnant cows included within this study and FMDV was subsequently transmitted vertically to fetuses. This is the first documentation of FMDV-associated abortions in cattle.


Animal models of disuse-induced bone loss: study protocol for a systematic review.

  • Mikkel Bo Brent‎ et al.
  • Systematic reviews‎
  • 2020‎

Disuse is a cardinal sign of various neurological diseases like stroke, cerebral palsy, and amyotrophic lateral sclerosis. Disuse leads to reduced mechanical loading of the skeleton, and a substantial and significant loss of bone mass quickly materializes. Several animal models have been proposed to investigate the pathogenesis of disuse-induced bone loss and to test new pharmaceutical targets to counteract it. As animal models may overcome several of the limitations in observational studies conducted in patients and allow for measurements not possible in humans, the primary objective of the present study is to provide a comprehensive overview of the available animal models of disuse-induced bone loss.


Novel Foot-and-Mouth Disease Vaccine Platform: Formulations for Safe and DIVA-Compatible FMD Vaccines With Improved Potency.

  • John M Hardham‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Inactivated, wild-type foot-and-mouth disease virus (FMDV) vaccines are currently used to control FMD around the world. These traditional FMD vaccines are produced using large quantities of infectious, virulent, wild-type FMD viruses, with the associated risk of virus escape from manufacturing facilities or incomplete inactivation during the vaccine formulation process. While higher quality vaccines produced from wild-type FMDV are processed to reduce non-structural antigens, there is still a risk that small amounts of non-structural proteins may be present in the final product. A novel, antigenically marked FMD-LL3B3D vaccine platform under development by Zoetis, Inc. and the USDA-ARS, consists of a highly attenuated virus platform containing negative antigenic markers in the conserved non-structural proteins 3Dpol and 3B that render resultant vaccines fully DIVA compatible. This vaccine platform allows for the easy exchange of capsid coding sequences to create serotype-specific vaccines. Here we demonstrate the efficacy of the inactivated FMD-LL3B3D-A24 Cruzeiro vaccine in cattle against wild-type challenge with A24 Cruzerio. A proprietary adjuvant system was used to formulate the vaccines that conferred effective protection at low doses while maintaining the DIVA compatibility. In contrast to wild-type FMDV, the recombinant FMD-LL3B3D mutant viruses have been shown to induce no clinical signs of FMD and no shedding of virus in cattle or pigs when inoculated as a live virus. The FMD-LL3B3D vaccine platform, currently undergoing development in the US, provides opportunities for safer vaccine production with full DIVA compatibility in support of global FMDV control and eradication initiatives.


Retinal oxygen supply shaped the functional evolution of the vertebrate eye.

  • Christian Damsgaard‎ et al.
  • eLife‎
  • 2019‎

The retina has a very high energy demand but lacks an internal blood supply in most vertebrates. Here we explore the hypothesis that oxygen diffusion limited the evolution of retinal morphology by reconstructing the evolution of retinal thickness and the various mechanisms for retinal oxygen supply, including capillarization and acid-induced haemoglobin oxygen unloading. We show that a common ancestor of bony fishes likely had a thin retina without additional retinal oxygen supply mechanisms and that three different types of retinal capillaries were gained and lost independently multiple times during the radiation of vertebrates, and that these were invariably associated with parallel changes in retinal thickness. Since retinal thickness confers multiple advantages to vision, we propose that insufficient retinal oxygen supply constrained the functional evolution of the eye in early vertebrates, and that recurrent origins of additional retinal oxygen supply mechanisms facilitated the phenotypic evolution of improved functional eye morphology.


PTH (1-34) and growth hormone in prevention of disuse osteopenia and sarcopenia in rats.

  • Mikkel Bo Brent‎ et al.
  • Bone‎
  • 2018‎

Osteopenia and sarcopenia develops rapidly during disuse. The study investigated whether intermittent parathyroid hormone (1-34) (PTH) and growth hormone (GH) administered alone or in combination could prevent or mitigate disuse osteopenia and sarcopenia in rats. Disuse was achieved by injecting 4IU botulinum toxin A (BTX) into the right hindlimb musculature of 12-14-week-old female Wistar rats. Seventy-two rats were divided into six groups: 1. Baseline; 2. Ctrl; 3. BTX; 4. BTX+GH; 5. BTX+PTH; 6. BTX+PTH+GH. PTH (1-34) (60μg/kg/day) and GH (5mg/kg/day). The animals were sacrificed after 6weeks of treatment. Sarcopenia was established by histomorphometry, while the skeletal properties were determined using DXA, μCT, mechanical testing, and dynamic bone histomorphometry. Disuse resulted in lower muscle mass (-63%, p<0.05), trabecular BV/TV (-28%, p<0.05), Tb.Th (-11%, p<0.05), lower diaphyseal cortical thickness (-10%, p<0.001), and lower bone strength at the distal femoral metaphysis (-27%, p<0.001) compared to Ctrl animals. PTH fully counteracted the immobilization-induced lower BV/TV, Tb.Th, and distal femoral metaphyseal strength. GH increased muscle mass (+17%, p<0.05) compared to BTX, but did not prevent the immobilization-induced loss of bone strength, BV/TV, and cortical trabecular thickness. Combination of PTH and GH increased distal femoral metaphyseal bone strength (+45%, p<0.001), BV/TV (+50%, p<0.05), Tb.Th (+40%, p<0.05), and whole femoral aBMD (+15%, p<0.001) compared to BTX and muscle mass (+21%, p<0.05) compared to BTX+PTH. In conclusion, PTH and GH in combination is more efficient at preventing the disuse-related deterioration of bone strength, density, and micro-architecture than either PTH or GH given as monotherapy. Furthermore, GH, either alone or in combination with PTH, attenuated disuse-induced loss of muscle mass. The combination of PTH and GH resulted in a more effective treatment than PTH and GH as monotherapy.


Activin type IIA decoy receptor and intermittent parathyroid hormone in combination overturns the bone loss in disuse-osteopenic mice.

  • Mikkel Bo Brent‎ et al.
  • Bone‎
  • 2021‎

Damage of the lower motor neuron cell bodies or their axons results in reduced or abolished voluntary movement accompanied by a substantial loss of bone and muscle mass. Intermittent parathyroid hormone 1-34 (PTH) (teriparatide) is one of the most potent bone-anabolic treatment regimens. ActRIIA-mFc is an activin type IIA decoy receptor that increases bone mass mediated by inhibition of the activin receptor signaling pathway. We investigated whether PTH or ActRIIA-mFc alone or in combination could prevent loss of bone and muscle mass induced by injecting botulinum toxin A (BTX) into the right hind limb in mice. Seventy-two 16-week-old female C57BL/6 mice were allocated to the following groups: Baseline, Control, BTX, BTX + ActRIIA-mFc (10 mg/kg), BTX + PTH (100 μg/kg), and BTX + ActRIIA-mFc + PTH. The mice were sacrificed after three weeks of disuse and treatment. In contrast to monotherapy with PTH, ActRIIA-mFc alone or in combination with PTH was able partly or completely to prevent disuse-induced loss of whole femoral bone mass, trabecular thickness, and bone strength. Moreover, an additive effect of ActRIIA-mFc and PTH on areal bone mineral density and trabecular bone volume was found. In summary, ActRIIA-mFc and PTH in combination were more effective in preventing disuse-induced bone loss and deterioration of trabecular micro-architecture than either treatment alone.


Hypobaric hypoxia deteriorates bone mass and strength in mice.

  • Mikkel Bo Brent‎ et al.
  • Bone‎
  • 2022‎

Mountaineers at high altitude are at increased risk of acute mountain sickness as well as high altitude pulmonary and cerebral edema. A densitometric study in mountaineers has suggested that expeditions at high altitude decrease bone mineral density. Surprisingly, the in vivo skeletal effects of hypobaric hypoxia are largely unknown, and have not been studied using advanced contemporary methods to assess bone microstructure. Eighty-four 22-week-old female mice were divided into seven groups with 12 mice in each group: 1. Baseline; 2. Normobaric, 4 weeks; 3. Hypobaric hypoxia, 4 weeks; 4. Normobaric, 8 weeks; 5. Hypobaric hypoxia, 8 weeks; 6. Normobaric, 12 weeks; and 7. Hypobaric hypoxia, 12 weeks. Hypobaric hypoxia mice were housed in hypobaric chambers at an ambient pressure of 500 mbar (5500 m altitude), while normobaric mice were housed at sea level atmospheric pressure for 4, 8, or 12 weeks, respectively. Hypobaric hypoxia had a profound impact on femoral cortical bone and L4 trabecular bone, while the effect on femoral trabecular bone was less pronounced. Hypobaric hypoxia reduced the bone strength of the femoral mid-diaphysis and L4 at all time-points. At femoral cortical bone, hypobaric hypoxia reduced bone formation through fewer mineralizing surfaces and lower bone formation rate after 2 weeks. In addition, bone strength decreased, and C-terminal telopeptide of type I collagen (CTX-I) increased independently of the duration of exposure to simulated high altitude. At L4, hypobaric hypoxia resulted in a substantial reduction in bone volume fraction, trabecular thickness, and trabecular number after 4 weeks of exposure. Hypobaric hypoxia reduced bone strength and femoral bone mass, while femoral trabecular bone was much less affected, indicating the skeletal response to hypobaric hypoxia differ between cortical and trabecular bone. These findings provide initial preclinical support for future clinical studies in mountaineers to assess bone status and bone strength after exposure to prolonged high altitude exposure.


Surveillance along the Rio Grande during the 2020 Vesicular Stomatitis Outbreak Reveals Spatio-Temporal Dynamics of and Viral RNA Detection in Black Flies.

  • Katherine I Young‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Vesicular stomatitis virus (VSV) emerges periodically from its focus of endemic transmission in southern Mexico to cause epizootics in livestock in the US. The ecology of VSV involves a diverse, but largely undefined, repertoire of potential reservoir hosts and invertebrate vectors. As part of a larger program to decipher VSV transmission, we conducted a study of the spatiotemporal dynamics of Simulium black flies, a known vector of VSV, along the Rio Grande in southern New Mexico, USA from March to December 2020. Serendipitously, the index case of VSV-Indiana (VSIV) in the USA in 2020 occurred at a central point of our study. Black flies appeared soon after the release of the Rio Grande's water from an upstream dam in March 2020. Two-month and one-year lagged precipitation, maximum temperature, and vegetation greenness, measured as Normalized Difference Vegetation Index (NDVI), were associated with increased black fly abundance. We detected VSIV RNA in 11 pools comprising five black fly species using rRT-PCR; five pools yielded a VSIV sequence. To our knowledge, this is the first detection of VSV in the western US from vectors that were not collected on premises with infected domestic animals.


Molecular Pathogenesis and Immune Evasion of Vesicular Stomatitis New Jersey Virus Inferred from Genes Expression Changes in Infected Porcine Macrophages.

  • Lauro Velazquez-Salinas‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

The molecular mechanisms associated with the pathogenesis of vesicular stomatitis virus (VSV) in livestock remain poorly understood. Several studies have highlighted the relevant role of macrophages in controlling the systemic dissemination of VSV during infection in different animal models, including mice, cattle, and pigs. To gain more insight into the molecular mechanisms used by VSV to impair the immune response in macrophages, we used microarrays to determine the transcriptomic changes produced by VSV infection in primary cultures of porcine macrophages. The results indicated that VSV infection induced the massive expression of multiple anorexic, pyrogenic, proinflammatory, and immunosuppressive genes. Overall, the interferon (IFN) response appeared to be suppressed, leading to the absence of stimulation of interferon-stimulated genes (ISG). Interestingly, VSV infection promoted the expression of several genes known to downregulate the expression of IFNβ. This represents an alternate mechanism for VSV control of the IFN response, beyond the recognized mechanisms mediated by the matrix protein. Although there was no significant differential gene expression in macrophages infected with a highly virulent epidemic strain compared to a less virulent endemic strain, the endemic strain consistently induced higher expression of all upregulated cytokines and chemokines. Collectively, this study provides novel insights into VSV molecular pathogenesis and immune evasion that warrant further investigation.


Comparison of Endemic and Epidemic Vesicular Stomatitis Virus Lineages in Culicoides sonorensis Midges.

  • Paula Rozo-Lopez‎ et al.
  • Viruses‎
  • 2022‎

Vesicular stomatitis virus (VSV) primarily infects livestock and is transmitted by direct contact and vectored by Culicoides midges (Diptera: Ceratopogonidae). Endemic to Central and South America, specific VSV lineages spread northward out of endemic regions of Mexico and into the U.S. sporadically every five to ten years. In 2012, a monophyletic epidemic lineage 1.1 successfully spread northward into the U.S. In contrast, the closest endemic ancestor, lineage 1.2, remained circulating exclusively in endemic regions in Mexico. It is not clear what roles virus-animal interactions and/or virus-vector interactions play in the ability of specific viral lineages to escape endemic regions in Mexico and successfully cause outbreaks in the U.S., nor the genetic basis for such incursions. Whole-genome sequencing of epidemic VSV 1.1 and endemic VSV 1.2 revealed significant differences in just seven amino acids. Previous studies in swine showed that VSV 1.1 was more virulent than VSV 1.2. Here, we compared the efficiency of these two viral lineages to infect the vector Culicoides sonorensis (Wirth and Jones) and disseminate to salivary glands for subsequent transmission. Our results showed that midges orally infected with the epidemic VSV 1.1 lineage had significantly higher infection dissemination rates compared to those infected with the endemic VSV 1.2 lineage. Thus, in addition to affecting virus-animal interactions, as seen with higher virulence in pigs, small genetic changes may also affect virus-vector interactions, contributing to the ability of specific viral lineages to escape endemic regions via vector-borne transmission.


Community composition of black flies during and after the 2020 vesicular stomatitis virus outbreak in Southern New Mexico, USA.

  • Madelin J Whelpley‎ et al.
  • Parasites & vectors‎
  • 2024‎

Vesicular stomatitis virus (VSV), a vector-borne pathogen of livestock, emerges periodically in the western US. In New Mexico (NM), US, most cases occur close to the Rio Grande River, implicating black flies (Simulium spp.) as a possible vector. In 2020, VS cases were reported in NM from April to May, although total black fly abundance remained high until September. We investigated the hypothesis that transience of local VSV transmission results from transient abundance of key, competent black fly species. Additionally, we investigated whether irrigation canals in southern NM support a different community of black flies than the main river. Lastly, to gain insight into the source of local black flies, in 2023 we collected black fly larvae prior to the release of water into the Rio Grande River channel.


The Foot-and-Mouth Disease Carrier State Divergence in Cattle.

  • Carolina Stenfeldt‎ et al.
  • Journal of virology‎
  • 2016‎

The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated in 46 cattle that were either naive or had been vaccinated using a recombinant, adenovirus-vectored vaccine 2 weeks before challenge. The prevalence of FMDV persistence was similar in both groups (62% in vaccinated cattle, 67% in nonvaccinated cattle), despite vaccinated cattle having been protected from clinical disease. Analysis of antemortem infection dynamics demonstrated that the subclinical divergence between FMDV carriers and animals that cleared the infection had occurred by 10 days postinfection (dpi) in vaccinated cattle and by 21 dpi in nonvaccinated animals. The anatomic distribution of virus in subclinically infected, vaccinated cattle was restricted to the pharynx throughout both the early and the persistent phases of infection. In nonvaccinated cattle, systemically disseminated virus was cleared from peripheral sites by 10 dpi, while virus selectively persisted within the nasopharynx of a subset of animals. The quantities of viral RNA shed in oropharyngeal fluid during FMDV persistence were similar in vaccinated and nonvaccinated cattle. FMDV structural and nonstructural proteins were localized to follicle-associated epithelium of the dorsal soft palate and dorsal nasopharynx in persistently infected cattle. Host transcriptome analysis of tissue samples processed by laser capture microdissection indicated suppression of antiviral host factors (interferon regulatory factor 7, CXCL10 [gamma interferon-inducible protein 10], gamma interferon, and lambda interferon) in association with persistent FMDV. In contrast, during the transitional phase of infection, the level of expression of IFN-λ mRNA was higher in follicle-associated epithelium of animals that had cleared the infection. This work provides novel insights into the intricate mechanisms of FMDV persistence and contributes to further understanding of this critical aspect of FMDV pathogenesis.


Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice.

  • Mette Høegh Wendelboe‎ et al.
  • Bone‎
  • 2016‎

In rodents, lactation is associated with a considerable and very rapid bone loss, which almost completely recovers after weaning. The aim of the present study was to investigate whether the bisphosphonate Zoledronate (Zln) can inhibit lactation induced bone loss, and if Zln interferes with recovery of bone mass after lactation has ceased. Seventy-six 10-weeks-old NMRI mice were divided into the following groups: Baseline, Pregnant, Lactation, Lactation+Zln, Recovery, Recovery+Zln, and Virgin Control (age-matched). The lactation period was 12days, then the pups were removed, and thereafter recovery took place for 28days. Zln, 100μg/kg, was given s.c. on the day of delivery, and again 4 and 8days later. Mechanical testing, μCT, and dynamic histomorphometry were performed. At L4, lactation resulted in a substantial loss of bone strength (-55% vs. Pregnant, p<0.01), BV/TV (-40% vs. Pregnant, p<0.01), and trabecular thickness (Tb.Th) (-29% vs. Pregnant, p<0.001). Treatment with Zln completely prevented lactation induced loss of bone strength, BV/TV, and Tb.Th at L4. Full recovery of micro-architectural and mechanical properties was found 28days after weaning in vehicle-treated mice. Interestingly, the recovery group treated with Zln during the lactation period had higher BV/TV (+45%, p<0.01) and Tb.Th (+16%, p<0.05) compared with virgin controls. Similar results were found at the proximal tibia and femur. This indicates that Zln did not interfere with the bone formation taking place after weaning. On this background, we conclude that post-lactation bone formation is not dependent on a preceding lactation induced bone loss.


Immobilization induced osteopenia is strain specific in mice.

  • Andreas Lodberg‎ et al.
  • Bone reports‎
  • 2015‎

Immobilization causes rapid and massive bone loss. By comparing Botulinum Toxin A (BTX)-induced bone loss in mouse strains with different genetic backgrounds we investigated whether the genetic background had an influence on the severity of the osteopenia. Secondly, we investigated whether BTX had systemic effects on bone. Female mice from four inbred mouse strains (BALB/cJ, C57BL/6 J, DBA/2 J, and C3H/HeN) were injected unilaterally with BTX (n = 10/group) or unilaterally with saline (n = 10/group). Mice were euthanized after 21 days, and the bone properties evaluated using μCT, DXA, bone histomorphometry, and mechanical testing. BTX resulted in substantially lower trabecular bone volume fraction (BV/TV) and trabecular thickness in all mouse strains. The deterioration of BV/TV was significantly greater in C57BL/6 J (- 57%) and DBA/2 J (- 60%) than in BALB/cJ (- 45%) and C3H/HeN (- 34%) mice. The loss of femoral neck fracture strength was significantly greater in C57BL/6 J (- 47%) and DBA/2 J (- 45%) than in C3H (- 25%) mice and likewise the loss of mid-femoral fracture strength was greater in C57BL/6 J (- 17%), DBA/2 J (- 12%), and BALB/cJ (- 9%) than in C3H/HeN (- 1%) mice, which were unaffected. Using high resolution μCT we found no evidence of a systemic effect on any of the microstructural parameters of the contralateral limb. Likewise, there was no evidence of a systemic effect on the bone strength in any mouse strain. We did, however, find a small systemic effect on aBMD in DBA/2 J and C3H/HeN mice. The present study shows that BTX-induced immobilization causes the greatest loss of cortical and trabecular bone in C57BL/6 J and DBA/2 J mice. A smaller loss of bone microstructure and fracture strength was seen in BALB/cJ mice, while the bone microstructure and fracture strength of C3H/HeN mice were markedly less affected. This indicates that BTX-induced loss of bone is mouse strain dependent. We found only minimal systemic effects of BTX.


Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses.

  • Carolina Stenfeldt‎ et al.
  • Scientific reports‎
  • 2017‎

Long-term persistent viral infections cause substantial morbidity and associated economic losses in human and veterinary contexts. Yet, the mechanisms associated with establishment of persistent infections are poorly elucidated. We investigated immunomodulatory mechanisms associated with clearance versus persistence of foot-and-mouth disease virus (FMDV) in micro-dissected compartments of the bovine nasopharynx by microarray. The use of laser-capture microdissection allowed elucidation of differential gene regulation within distinct anatomic compartments critical to FMDV infection. Analysis of samples from transitional and persistent phases of infection demonstrated significant differences in transcriptome profiles of animals that cleared infection versus those that became persistently infected carriers. Specifically, it was demonstrated that clearance of FMDV from the nasopharyngeal mucosa was associated with upregulation of targets associated with activation of T cell-mediated immunity. Contrastingly, gene regulation in FMDV carriers suggested inhibition of T cell activation and promotion of Th2 polarization. These findings were corroborated by immunofluorescence microscopy which demonstrated relative abundance of CD8+ T cells in the nasopharyngeal mucosa in association with clearance of FMDV. The findings presented herein emphasize that a critical balance between Th1 and Th2 -mediated immunity is essential for successful clearance of FMDV infection and should be considered for development of next-generation vaccines and antiviral products.


Increased Virulence of an Epidemic Strain of Vesicular Stomatitis Virus Is Associated With Interference of the Innate Response in Pigs.

  • Lauro Velazquez-Salinas‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Vesicular stomatitis virus (VSV) causes sporadic outbreaks of vesicular disease in the southwestern United States. The intrinsic characteristics of epidemic strains associated with these outbreaks are poorly understood. In this study, we report the distinctive genomic and biological characteristics of an epidemic (NJ0612NME6) strain of VSV compared with an endemic (NJ0806VCB) strain. Genomic comparisons between the two strains revealed a total of 111 nucleotide differences (23 non-synonymous) with potentially relevant replacements located in the P, G, and L proteins. When tested in experimentally infected pigs, a natural host of VSV, the epidemic strain caused higher fever and an increased number of vesicular lesions compared to pigs infected with the endemic strain. Pigs infected with the epidemic strain showed decreased systemic antiviral activity (type I - IFN), lower antibody levels, higher levels of interleukin 6, and lower levels of tumor necrosis factor during the acute phase of disease compared to pigs infected with the endemic strain. Furthermore, we document the existence of an RNAemia phase in pigs experimentally infected with VSV and explored the cause for the lack of recovery of infectious virus from blood. Finally, the epidemic strain was shown to be more efficient in down-regulating transcription of IRF-7 in primary porcine macrophages. Collectively, the data shows that the epidemic strain of VSV we tested has an enhanced ability to modulate the innate immune response of the vertebrate host. Further studies are needed to examine other epidemic strains and what contributions a phenotype of increased virulence might have on the transmission of VSV during epizootics.


Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers.

  • James J Zhu‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.


A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses.

  • Lindsey A Moser‎ et al.
  • mSystems‎
  • 2016‎

Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories.


The effect of casein glycomacropeptide versus free synthetic amino acids for early treatment of phenylketonuria in a mice model.

  • Kirsten K Ahring‎ et al.
  • PloS one‎
  • 2022‎

Management of phenylketonuria (PKU) is mainly achieved through dietary control with limited intake of phenylalanine (Phe) from food, supplemented with low protein (LP) food and a mixture of free synthetic (FS) amino acids (AA) (FSAA). Casein glycomacropeptide (CGMP) is a natural peptide released in whey during cheese making by the action of the enzyme chymosin. Because CGMP in its pure form does not contain Phe, it is nutritionally suitable as a supplement in the diet for PKU when enriched with specific AAs. Lacprodan® CGMP-20 (= CGMP) used in this study contained only trace amounts of Phe due to minor presence of other proteins/peptides.


Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep.

  • Carolina Stenfeldt‎ et al.
  • PloS one‎
  • 2019‎

Foot-and-mouth disease virus (FMDV) is capable of infecting all cloven-hoofed domestic livestock species, including cattle, pigs, goats, and sheep. However, in contrast to cattle and pigs, the pathogenesis of FMDV in small ruminants has been incompletely elucidated. The objective of the current investigation was to characterize tissue- and cellular tropism of early and late stages of FMDV infection in sheep following three different routes of simulated natural virus exposure. Extensive post-mortem harvest of tissue samples at pre-determined time points during early infection (24 and 48 hours post infection) demonstrated that tissues specifically susceptible to primary FMDV infection included the paraepiglottic- and palatine tonsils, as well as the nasopharyngeal mucosa. Additionally, experimental aerosol inoculation of sheep led to substantial virus replication in the lungs at 24-48 hours post-inoculation. During persistent infection (35 days post infection), the paraepiglottic- and palatine tonsils were the only tissues from which infectious FMDV was recovered. This is strikingly different from cattle, in which persistent FMDV infection has consistently been located to the nasopharyngeal mucosa. Analysis of tissue sections by immunomicroscopy revealed a strict epithelial tropism during both early and late phases of infection as FMDV was consistently localized to cytokeratin-expressing epithelial cells. This study expands upon previous knowledge of FMDV pathogenesis in sheep by providing detailed information on the temporo-anatomic distribution of FMDV in ovine tissues. Findings are discussed in relation to similar investigations previously performed in cattle and pigs, highlighting similarities and differences in FMDV pathogenesis across natural host species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: