Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Rare variants in NR2F2 cause congenital heart defects in humans.

  • Saeed Al Turki‎ et al.
  • American journal of human genetics‎
  • 2014‎

Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10(-7)) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters.


Interventions to support patients with sharing genetic test results with at-risk relatives: a synthesis without meta-analysis (SWiM).

  • Lisa Marie Ballard‎ et al.
  • European journal of human genetics : EJHG‎
  • 2023‎

Whilst the finding of heritable susceptibility to disease was once relatively rare, mainstreaming of genetic testing has resulted in a steady increase. Patients are often encouraged to share their genetic test results with relevant relatives, but relatives may not receive this information, leaving them without knowledge of their own risk. Therefore, strategies to help communicate such information are important. This review aimed to explore the efficacy of existing interventions to improve the sharing of genetic test results. A synthesis without meta-analysis design was used. A systematic search of Medline, CINAHL, PsychINFO, and AMED was conducted, and five studies were identified worldwide. Data were extracted for each study regarding study aim, participant characteristics, condition, intervention details, comparison, study duration, outcome measures, theory and behaviour change techniques used. Limited efficacy and application of theory was found. Knowledge, motivation and self-efficacy were not increased in any intervention. No gender differences in communication behaviour were encountered in interventions that recruited men and women. Two studies reported an evaluation of acceptability, which showed that the interventions were well received by patients and health professionals. No study reported the involvement of the target population in any phase of intervention development. Given the lack of health psychology-informed interventions in this area of clinical genetics, we recommend genetic health professionals, health psychologists and patients collaborate on all stages of future interventions that involve the cascading of genetic health information within families. We also provide guidance regarding use of theory and intervention elements for future intervention development.


Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33.

  • Richard S Houlston‎ et al.
  • Nature genetics‎
  • 2010‎

Genome-wide association studies (GWAS) have identified ten loci harboring common variants that influence risk of developing colorectal cancer (CRC). To enhance the power to identify additional CRC risk loci, we conducted a meta-analysis of three GWAS from the UK which included a total of 3,334 affected individuals (cases) and 4,628 controls followed by multiple validation analyses including a total of 18,095 cases and 20,197 controls. We identified associations at four new CRC risk loci: 1q41 (rs6691170, odds ratio (OR) = 1.06, P = 9.55 × 10⁻¹⁰ and rs6687758, OR = 1.09, P = 2.27 × 10⁻⁹, 3q26.2 (rs10936599, OR = 0.93, P = 3.39 × 10⁻⁸), 12q13.13 (rs11169552, OR = 0.92, P = 1.89 × 10⁻¹⁰ and rs7136702, OR = 1.06, P = 4.02 × 10⁻⁸) and 20q13.33 (rs4925386, OR = 0.93, P = 1.89 × 10⁻¹⁰). In addition to identifying new CRC risk loci, this analysis provides evidence that additional CRC-associated variants of similar effect size remain to be discovered.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: