Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Serum- and Glucocorticoid-Inducible Kinase-1 (SGK-1) Plays a Role in Membrane Trafficking in Caenorhabditis elegans.

  • Ming Zhu‎ et al.
  • PloS one‎
  • 2015‎

The mammalian serum- and glucocorticoid-inducible kinase SGK1 regulates the endocytosis of ion channels. Here we report that in C. elegans sgk-1 null mutants, GFP-tagged MIG-14/Wntless, the sorting receptor of Wnt, failed to localize to the basolateral membrane of intestinal cells; instead, it was mis-sorted to lysosomes. This effect can be explained in part by altered sphingolipid levels, because reducing glucosylceramide biosynthesis restored the localization of MIG-14::GFP. Membrane traffic was not perturbed in general, as no obvious morphological defects were detected for early endosomes, the Golgi apparatus, and the endoplasmic reticulum (ER) in sgk-1 null animals. The recycling of MIG-14/Wntless through the Golgi might be partially responsible for the observed phenotype because the subcellular distribution of two plasma membrane cargoes that do not recycle through the trans-Golgi network (TGN) was affected to a lesser degree. Consistently, knockdown of the ArfGEF gbf-1 altered the distribution of SGK-1 at the basolateral membrane of intestinal cells. In addition, we found that sgk-1(RNAi) induced unfolded protein response in the ER, suggesting at least an indirect role of SGK-1 early in the secretory pathway. We propose that SGK-1 function is required for lipid homeostasis and that it acts at different intracellular trafficking steps.


Evolutionary cell biology traces the rise of the exomer complex in Fungi from an ancient eukaryotic component.

  • Inmaculada Ramirez-Macias‎ et al.
  • Scientific reports‎
  • 2018‎

Cargo is transported from the trans-Golgi Network to the plasma membrane by adaptor complexes, which are pan-eukaryotic components. However, in yeast, cargo can also be exported by the exomer complex, a heterotetrameric protein complex consisting of two copies of Chs5, and any two members of four paralogous proteins (ChAPs). To understand the larger relevance of exomer, its phylogenetic distribution and function outside of yeast need to be explored. We find that the four ChAP proteins are derived from gene duplications after the divergence of Yarrowia from the remaining Saccharomycotina, with BC8 paralogues (Bch2 and Chs6) being more diverged relative to the BB8 paralogues (Bch1 and Bud7), suggesting neofunctionalization. Outside Ascomycota, a single preduplicate ChAP is present in nearly all Fungi and in diverse eukaryotes, but has been repeatedly lost. Chs5, however, is a fungal specific feature, appearing coincidentally with the loss of AP-4. In contrast, the ChAP protein is a wide-spread, yet uncharacterized, membrane-trafficking component, adding one more piece to the increasingly complex machinery deduced as being present in our ancient eukaryotic ancestor.


Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations.

  • Carlos Anton‎ et al.
  • Molecular biology of the cell‎
  • 2017‎

Exomer is an adaptor complex required for the direct transport of a selected number of cargoes from the trans-Golgi network (TGN) to the plasma membrane in Saccharomyces cerevisiae However, exomer mutants are highly sensitive to increased concentrations of alkali metal cations, a situation that remains unexplained by the lack of transport of any known cargoes. Here we identify several HAL genes that act as multicopy suppressors of this sensitivity and are connected to the reduced function of the sodium ATPase Ena1. Furthermore, we find that Ena1 is dependent on exomer function. Even though Ena1 can reach the plasma membrane independently of exomer, polarized delivery of Ena1 to the bud requires functional exomer. Moreover, exomer is required for full induction of Ena1 expression after cationic stress by facilitating the plasma membrane recruitment of the molecular machinery involved in Rim101 processing and activation of the RIM101 pathway in response to stress. Both the defective localization and the reduced levels of Ena1 contribute to the sensitivity of exomer mutants to alkali metal cations. Our work thus expands the spectrum of exomer-dependent proteins and provides a link to a more general role of exomer in TGN organization.


Context-dependent deposition and regulation of mRNAs in P-bodies.

  • Congwei Wang‎ et al.
  • eLife‎
  • 2018‎

Cells respond to stress by remodeling their transcriptome through transcription and degradation. Xrn1p-dependent degradation in P-bodies is the most prevalent decay pathway, yet, P-bodies may facilitate not only decay, but also act as a storage compartment. However, which and how mRNAs are selected into different degradation pathways and what determines the fate of any given mRNA in P-bodies remain largely unknown. We devised a new method to identify both common and stress-specific mRNA subsets associated with P-bodies. mRNAs targeted for degradation to P-bodies, decayed with different kinetics. Moreover, the localization of a specific set of mRNAs to P-bodies under glucose deprivation was obligatory to prevent decay. Depending on its client mRNA, the RNA-binding protein Puf5p either promoted or inhibited decay. Furthermore, the Puf5p-dependent storage of a subset of mRNAs in P-bodies under glucose starvation may be beneficial with respect to chronological lifespan.


Local translation of yeast ERG4 mRNA at the endoplasmic reticulum requires the brefeldin A resistance protein Bfr1.

  • Srinivas Manchalu‎ et al.
  • RNA (New York, N.Y.)‎
  • 2019‎

Brefeldin A resistance factor 1 (Bfr1p) is a nonessential RNA-binding protein and multicopy suppressor of brefeldin A sensitivity in Saccharomyces cerevisiae Deletion of BFR1 leads to multiple defects, including altered cell shape and size, change in ploidy, induction of P-bodies and chromosomal missegregation. Bfr1p has been shown to associate with polysomes, binds to several hundred mRNAs, and can target some of them to P-bodies. Although this implies a role of Bfr1p in translational control of mRNAs, its molecular function remains elusive. In the present study, we show that mutations in RNA-binding residues of Bfr1p impede its RNA-dependent colocalization with ER, yet do not mimic the known cellular defects seen upon BFR1 deletion. However, a Bfr1 RNA-binding mutant is impaired in binding to ERG4 mRNA, which encodes an enzyme required for the final step of ergosterol biosynthesis. Consistently, bfr1Δ strains show a strong reduction in Erg4p protein levels, most likely because of degradation of misfolded Erg4p. Polysome profiling of bfr1Δ or bfr1 mutant strains reveals a strong shift of ERG4 mRNA to polysomes, consistent with a function of Bfr1p in elongation or increased ribosome loading. Collectively, our data reveal that Bfr1 has at least two separable functions: one in RNA binding and cotranslational protein translocation into the ER and one in ploidy control or chromosome segregation.


The ER protein Ema19 facilitates the degradation of nonimported mitochondrial precursor proteins.

  • Janina Laborenz‎ et al.
  • Molecular biology of the cell‎
  • 2021‎

For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.


Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis.

  • Ludovic Enkler‎ et al.
  • Nature cell biology‎
  • 2023‎

Lipid mobilization through fatty acid β-oxidation is a central process essential for energy production during nutrient shortage. In yeast, this catabolic process starts in the peroxisome from where β-oxidation products enter mitochondria and fuel the tricarboxylic acid cycle. Little is known about the physical and metabolic cooperation between these organelles. Here we found that expression of fatty acid transporters and of the rate-limiting enzyme involved in β-oxidation is decreased in cells expressing a hyperactive mutant of the small GTPase Arf1, leading to an accumulation of fatty acids in lipid droplets. Consequently, mitochondria became fragmented and ATP synthesis decreased. Genetic and pharmacological depletion of fatty acids phenocopied the arf1 mutant mitochondrial phenotype. Although β-oxidation occurs in both mitochondria and peroxisomes in mammals, Arf1's role in fatty acid metabolism is conserved. Together, our results indicate that Arf1 integrates metabolism into energy production by regulating fatty acid storage and utilization, and presumably organelle contact sites.


YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa.

  • Jacob G Malone‎ et al.
  • PLoS pathogens‎
  • 2010‎

During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections.


Defects in the secretory pathway and high Ca2+ induce multiple P-bodies.

  • Cornelia Kilchert‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

mRNA is sequestered and turned over in cytoplasmic processing bodies (PBs), which are induced by various cellular stresses. Unexpectedly, in Saccharomyces cerevisiae, mutants of the small GTPase Arf1 and various secretory pathway mutants induced a significant increase in PB number, compared with PB induction by starvation or oxidative stress. Exposure of wild-type cells to osmotic stress or high extracellular Ca(2+) mimicked this increase in PB number. Conversely, intracellular Ca(2+)-depletion strongly reduced PB formation in the secretory mutants. In contrast to PB induction through starvation or osmotic stress, PB formation in secretory mutants and by Ca(2+) required the PB components Pat1 and Scd6, and calmodulin, indicating that different stressors act through distinct pathways. Consistent with this hypothesis, when stresses were combined, PB number did not correlate with the strength of the translational block, but rather with the type of stress encountered. Interestingly, independent of the stressor, PBs appear as spheres of approximately 40-100 nm connected to the endoplasmic reticulum (ER), consistent with the idea that translation and silencing/degradation occur in a spatially coordinated manner at the ER. We propose that PB assembly in response to stress occurs at the ER and depends on intracellular signals that regulate PB number.


The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p.

  • Uli Rockenbauch‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

The exomer complex is a putative vesicle coat required for the direct transport of a subset of cargoes from the trans-Golgi network (TGN) to the plasma membrane. Exomer comprises Chs5p and the ChAPs family of proteins (Chs6p, Bud7p, Bch1p, and Bch2p), which are believed to act as cargo receptors. In particular, Chs6p is required for the transport of the chitin synthase Chs3p to the bud neck. However, how the ChAPs associate with Chs5p and recognize cargo is not well understood. Using domain-switch chimeras of Chs6p and Bch2p, we show that four tetratricopeptide repeats (TPRs) are involved in interaction with Chs5p. Because these roles are conserved among the ChAPs, the TPRs are interchangeable among different ChAP proteins. In contrast, the N-terminal and the central parts of the ChAPs contribute to cargo specificity. Although the entire N-terminal domain of Chs6p is required for Chs3p export at all cell cycle stages, the central part seems to predominantly favor Chs3p export in small-budded cells. The cargo Chs3p probably also uses a complex motif for the interaction with Chs6, as the C-terminus of Chs3p interacts with Chs6p and is necessary, but not sufficient, for TGN export.


Cotranslational transport of ABP140 mRNA to the distal pole of S. cerevisiae.

  • Cornelia Kilchert‎ et al.
  • The EMBO journal‎
  • 2011‎

In budding yeast, several mRNAs are selectively transported into the daughter cell in an actin-dependent manner by a specialized myosin system, the SHE machinery. With ABP140 mRNA, we now describe the first mRNA that is transported in the opposite direction and localizes to the distal pole of the mother cell, independent of the SHE machinery. Distal pole localization is not observed in mutants devoid of actin cables and can be disrupted by latrunculin A. Furthermore, localization of ABP140 mRNA requires the N-terminal actin-binding domain of Abp140p to be expressed. By replacing the N-terminal localization motif, ABP140 mRNA can be retargeted to different subcellular structures. In addition, accumulation of the mRNA at the distal pole can be prevented by disruption of polysomes. Using the MS2 system, the mRNA was found to associate with actin cables and to follow actin cable dynamics. We therefore propose a model of translational coupling, in which ABP140 mRNA is tethered to actin cables via its nascent protein product and is transported to the distal pole by actin retrograde flow.


Precise and timely delivery of proteins within cells continues to be an exciting area of cell biology.

  • Wanjin Hong‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

No abstract available


The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.

  • Nitish Mittal‎ et al.
  • Nature communications‎
  • 2017‎

In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.


Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast.

  • Eric C Arakel‎ et al.
  • Journal of cell science‎
  • 2019‎

The Arf GTPase controls formation of the COPI vesicle coat. Recent structural models of COPI revealed the positioning of two Arf1 molecules in contrasting molecular environments. Each of these pockets for Arf1 is expected to also accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and protein interactions observed between isolated domains indirectly suggest that each niche preferentially recruits one of the two ArfGAPs known to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. The functional role of the unique non-catalytic domain of either ArfGAP has not been integrated into the current COPI structural model. Here, we delineate key differences in the consequences of triggering GTP hydrolysis through the activity of one versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the Snf1 kinase complex, the yeast homologue of AMP-activated protein kinase (AMPK), phosphorylates the region of Glo3 that is crucial for this effect and, thereby, regulates its function in the COPI-vesicle cycle. Our results revise the model of ArfGAP function in the molecular context of COPI.This article has an associated First Person interview with the first author of the paper.


Patched regulates lipid homeostasis by controlling cellular cholesterol levels.

  • Carla E Cadena Del Castillo‎ et al.
  • Nature communications‎
  • 2021‎

Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.


ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat.

  • Ulrike Rein‎ et al.
  • The Journal of cell biology‎
  • 2002‎

In eukaryotic cells, secretion is achieved by vesicular transport. Fusion of such vesicles with the correct target compartment relies on SNARE proteins on both vesicle (v-SNARE) and the target membranes (t-SNARE). At present it is not clear how v-SNAREs are incorporated into transport vesicles. Here, we show that binding of ADP-ribosylation factor (ARF)-GTPase-activating protein (GAP) to ER-Golgi v-SNAREs is an essential step for recruitment of Arf1p and coatomer, proteins that together form the COPI coat. ARF-GAP acts catalytically to recruit COPI components. Inclusion of v-SNAREs into COPI vesicles could be mediated by direct interaction with the coat. The mechanisms by which v-SNAREs interact with COPI and COPII coat proteins seem to be different and may play a key role in determining specificity in vesicle budding.


Preparation of Sequencing RNA Libraries through Chemical Cross-linking Coupled to Affinity Purification (cCLAP) in Saccharomyces cerevisiae.

  • Congwei Wang‎ et al.
  • Bio-protocol‎
  • 2018‎

Ribonucleoprotein particles (mRNPs) are complexes consisting of mRNAs and RNA-binding proteins (RBPs) which control mRNA transcription localization, turnover, and translation. Some mRNAs within the mRNPs have been shown to undergo degradation or storage. Those transcripts can lack general mRNA elements, like the poly(A) tail or 5' cap structure, which prevent their identification through the application of widely-used approaches like oligo(dT) purification. Here, we describe a modified cross-linking affinity purification protocol (cCLAP) based on existing cross-linking and immunoprecipitation (CLIP) methods to isolate mRNAs which could be deadenylated, decapped and/or partially degraded in mRNPs, opening the possibility to detect different types of non-coding RNAs (ncRNAs). Once isolated, the RNAs are subjected to adapter ligation and subsequently proceeded to Next-generation sequencing (NGS). Due to the fast and efficient cross-linking and quenching steps, this protocol is also suitable for transiently induced mRNP granules. Examples include processing bodies (PBs) or stress granules (SGs) triggered by extrinsic stressors. Its reproducibility and broad applications make this protocol a useful and powerful tool to study the RNA compositions of specific RNPs.


The ArfGEF GBF-1 Is Required for ER Structure, Secretion and Endocytic Transport in C. elegans.

  • Karin B Ackema‎ et al.
  • PloS one‎
  • 2013‎

Small GTPases of the Sar/Arf family are essential to generate transport containers that mediate communication between organelles of the secretory pathway. Guanine nucleotide exchange factor (GEFs) activate the small GTPases and help their anchorage in the membrane. Thus, GEFs in a way temporally and spatially control Sar1/Arf1 GTPase activation. We investigated the role of the ArfGEF GBF-1 in C. elegans oocytes and intestinal epithelial cells. GBF-1 localizes to the cis-Golgi and is part of the t-ER-Golgi elements. GBF-1 is required for secretion and Golgi integrity. In addition, gbf-1(RNAi) causes the ER reticular structure to become dispersed, without destroying ER exit sites (ERES) because the ERES protein SEC-16 was still localized in distinct punctae at t-ER-Golgi units. Moreover, GBF-1 plays a role in receptor-mediated endocytosis in oocytes, without affecting recycling pathways. We find that both the yolk receptor RME-2 and the recycling endosome-associated RAB-11 localize similarly in control and gbf-1(RNAi) oocytes. While RAB5-positive early endosomes appear to be less prominent and the RAB-5 levels are reduced by gbf-1(RNAi) in the intestine, RAB-7-positive late endosomes were more abundant and formed aggregates and tubular structures. Our data suggest a role for GBF-1 in ER structure and endosomal traffic.


N-glycosylation is required for secretion and mitosis in C. elegans.

  • Julia Stevens‎ et al.
  • PloS one‎
  • 2013‎

N-glycosylation of proteins is an essential process, and N-glucans serve as important beacons in protein folding and ER associated degradation. More importantly, N-glycosylation increases the structural repertoire of proteins because the addition of the N-glucan on proteins will serve as a base for further sugar additions in the Golgi apparatus, and hence complex three-dimensional structures can be build. N-glycosylation is mediated by the ER-resident OST complex, which is essential throughout eukaryotes. Partial knockdown of conserved OST complex members, such as C. elegans RIBO-1, led to an embryonic lethal phenotype. Although the ER morphology was not grossly altered in ribo-1(RNAi) oocytes and embryos, secretion of yolk and of the yolk receptor RME-2 was perturbed in those worms. Perhaps as a consequence of reduced arrival of N-glycosylated proteins at the plasma membrane, cytokinesis occurred less efficiently leading to multinuclear cells. Unexpectedly, we detected a chromosome segregation defect in ribo-1(RNAi) embryos suggesting an essential role of at least one N-glycosylated protein in metaphase-anaphase transition.


Dynamic assembly of the exomer secretory vesicle cargo adaptor subunits.

  • Martina Huranova‎ et al.
  • EMBO reports‎
  • 2016‎

The trans-Golgi network (TGN) is the main secretory pathway sorting station, where cargoes are packed into appropriate transport vesicles targeted to specific destinations. Exomer is a cargo adaptor necessary for direct transport of a subset of cargoes from the TGN to the plasma membrane in yeast. Here, we show that unlike classical adaptor complexes, exomer is not recruited en bloc to the TGN, but rather assembles through a stepwise pathway, in which first the scaffold protein Chs5 and then the cargo-binding units, the ChAPs, are recruited. Although all ChAPs are able to assemble functional exomer complexes, they do so with different efficiencies. The mutual relationship between ChAPs varies from cooperation to competition depending on their expression levels and affinities to Chs5 allowing an optimized and efficient cargo transport. The multifactorial assembly pathway results in an exquisitely fine-tuned adaptor complex, enabling the cell to quickly respond and adapt to changes such as stress.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: