Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Treatment With Small Molecule Inhibitors of Advanced Glycation End-Products Formation and Advanced Glycation End-Products-Mediated Collagen Cross-Linking Promotes Experimental Aortic Aneurysm Progression in Diabetic Mice.

  • Yankui Li‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Background Although diabetes attenuates abdominal aortic aneurysms (AAAs), the mechanisms by which diabetes suppresses AAAs remain incompletely understood. Accumulation of advanced glycation end- (AGEs) reduces extracellular matrix (ECM) degradation in diabetes. Because ECM degradation is critical for AAA pathogenesis, we investigated whether AGEs mediate experimental AAA suppression in diabetes by blocking AGE formation or disrupting AGE-ECM cross-linking using small molecule inhibitors. Methods and Results Male C57BL/6J mice were treated with streptozotocin and intra-aortic elastase infusion to induce diabetes and experimental AAAs, respectively. Aminoguanidine (AGE formation inhibitor, 200 mg/kg), alagebrium (AGE-ECM cross-linking disrupter, 20 mg/kg), or vehicle was administered daily to mice from the last day following streptozotocin injection. AAAs were assessed via serial aortic diameter measurements, histopathology, and in vitro medial elastolysis assays. Treatment with aminoguanidine, not alagebrium, diminished AGEs in diabetic AAAs. Treatment with both inhibitors enhanced aortic enlargement in diabetic mice as compared with vehicle treatment. Neither enhanced AAA enlargement in nondiabetic mice. AAA enhancement in diabetic mice by aminoguanidine or alagebrium treatment promoted elastin degradation, smooth muscle cell depletion, mural macrophage accumulation, and neoangiogenesis without affecting matrix metalloproteinases, C-C motif chemokine ligand 2, or serum glucose concentration. Additionally, treatment with both inhibitors reversed suppression of diabetic aortic medial elastolysis by porcine pancreatic elastase in vitro. Conclusions Inhibiting AGE formation or AGE-ECM cross-linking enhances experimental AAAs in diabetes. These findings support the hypothesis that AGEs attenuate experimental AAAs in diabetes. These findings underscore the potential translational value of enhanced ECM cross-linking as an inhibitory strategy for early AAA disease.


Spermidine Suppresses Development of Experimental Abdominal Aortic Aneurysms.

  • Shuai Liu‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background The protective effects of polyamines on cardiovascular disease have been demonstrated in many studies. However, the roles of spermidine, a natural polyamine, in abdominal aortic aneurysm (AAA) disease have not been studied. In this study, we investigated the influence and potential mechanisms of spermidine treatment on experimental AAA disease. Methods and Results Experimental AAAs were induced in 8- to 10-week-old male C57BL/6J mice by transient intra-aortic infusion of porcine pancreatic elastase. Spermidine was administered via drinking water at a concentration of 3 mmol/L. Spermidine treatment prevented experimental AAA formation with preservation of medial elastin and smooth muscle cells. In immunostaining, macrophages, T cells, neutrophils, and neovessels were significantly reduced in aorta of spermidine-treated, as compared with vehicle-treated elastase-infused mice. Additionally, flow cytometric analysis showed that spermidine treatment reduced aortic leukocyte infiltration and circulating inflammatory cells. Furthermore, we demonstrated that spermidine treatment promoted autophagy-related proteins in experimental AAAs using Western blot analysis, immunostaining, and transmission electron microscopic examination. Autophagic function was evaluated for human abdominal aneurysmal and nonaneurysmal adjacent aortae from AAA patients using Western blot analysis and immunohistochemistry. Dysregulated autophagic function, as evidenced by increased SQSTM1/p62 protein and phosphorylated mTOR, was found in aneurysmal, as compared with nonaneurysmal, aortic segments. Conclusions Our results suggest that spermidine supplementation limits experimental AAA formation associated with preserved aortic structural integrity, attenuated aortic inflammatory infiltration, reduced circulating inflammatory monocytes, and increased autophagy-related proteins. These findings suggest that spermidine may be a promising treatment for AAA disease.


MKEY, a Peptide Inhibitor of CXCL4-CCL5 Heterodimer Formation, Protects Against Stroke in Mice.

  • Yifang Fan‎ et al.
  • Journal of the American Heart Association‎
  • 2016‎

MKEY, a synthetic cyclic peptide inhibitor of CXCL4-CCL5 heterodimer formation, has been shown to protect against atherosclerosis and aortic aneurysm formation by mediating inflammation, but whether it modulates neuroinflammation and brain injury has not been studied. We therefore studied the role of MKEY in stroke-induced brain injury in mice.


Recombinant Interleukin-19 Suppresses the Formation and Progression of Experimental Abdominal Aortic Aneurysms.

  • Hiroki Tanaka‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Interleukin-19 is an immunosuppressive cytokine produced by immune and nonimmune cells, but its role in abdominal aortic aneurysm (AAA) pathogenesis is not known. This study aimed to investigate interleukin-19 expression in, and influences on, the formation and progression of experimental AAAs. Methods and Results Human specimens were obtained at aneurysm repair surgery or from transplant donors. Experimental AAAs were created in 10- to 12-week-old male mice via intra-aortic elastase infusion. Influence and potential mechanisms of interleukin-19 treatment on AAAs were assessed via ultrasonography, histopathology, flow cytometry, and gene expression profiling. Immunohistochemistry revealed augmented interleukin-19 expression in both human and experimental AAAs. In mice, interleukin-19 treatment before AAA initiation via elastase infusion suppressed aneurysm formation and progression, with attenuation of medial elastin degradation, smooth-muscle depletion, leukocyte infiltration, neoangiogenesis, and matrix metalloproteinase 2 and 9 expression. Initiation of interleukin-19 treatment after AAA creation limited further aneurysmal degeneration. In additional experiments, interleukin-19 treatment inhibited murine macrophage recruitment following intraperitoneal thioglycolate injection. In classically or alternatively activated macrophages in vitro, interleukin-19 downregulated mRNA expression of inducible nitric oxide synthase, chemokine C-C motif ligand 2, and metalloproteinases 2 and 9 without apparent effect on cytokine-expressing helper or cytotoxic T-cell differentiation, nor regulatory T cellularity, in the aneurysmal aorta or spleen of interleukin-19-treated mice. Interleukin-19 also suppressed AAAs created via angiotensin II infusion in hyperlipidemic mice. Conclusions Based on human evidence and experimental modeling observations, interleukin-19 may influence the development and progression of AAAs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: