Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.

  • Till F M Andlauer‎ et al.
  • Science advances‎
  • 2016‎

We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.


Differences in morphology and visual function of myelin oligodendrocyte glycoprotein antibody and multiple sclerosis associated optic neuritis.

  • Rino Vicini‎ et al.
  • Journal of neurology‎
  • 2021‎

Myelin oligodendrocyte glycoprotein immunoglobulin G associated optic neuritis (MOG-ON) is a recently described entity. Recent studies have shown that MOG-ON has a more severe clinical presentation than classic optic neuritis (ON).


c-Jun N-Terminal Kinase as a Therapeutic Target in Experimental Autoimmune Encephalomyelitis.

  • Maud Bagnoud‎ et al.
  • Cells‎
  • 2020‎

c-Jun N-terminal kinase (JNK) is upregulated during multiple sclerosis relapses and at the peak of experimental autoimmune encephalomyelitis (EAE). We aim to investigate the effects of pharmacological pan-JNK inhibition on the course of myelin oligodendrocyte glycoprotein (MOG35-55) EAE disease using in vivo and in vitro experimental models. EAE was induced in female C57BL/6JRj wild type mice using MOG35-55. SP600125 (SP), a reversible adenosine triphosphate competitive pan-JNK inhibitor, was then given orally after disease onset. Positive correlation between SP plasma and brain concentration was observed. Nine, but not three, consecutive days of SP treatment led to a significant dose-dependent decrease of mean cumulative MOG35-55 EAE severity that was associated with increased mRNA expression of interferon gamma (INF-γ) and tumor necrosis factor alpha (TNF-α) in the spinal cord. On a histological level, reduced spinal cord immune cell-infiltration predominantly of CD3+ T cells as well as increased activity of Iba1+ cells were observed in treated animals. In addition, in vitro incubation of murine and human CD3+ T cells with SP resulted in reduced T cell apoptosis and proliferation. In conclusion, our study demonstrates that pharmacological pan-JNK inhibition might be a treatment strategy for autoimmune central nervous system demyelination.


A Fully Automated Pipeline for Normative Atrophy in Patients with Neurodegenerative Disease.

  • Christian Rummel‎ et al.
  • Frontiers in neurology‎
  • 2017‎

Volumetric image analysis to detect progressive brain tissue loss in patients with multiple sclerosis (MS) has recently been suggested as a promising marker for "no evidence of disease activity." Software packages for longitudinal whole-brain volume analysis in individual patients are already in clinical use; however, most of these methods have omitted region-based analysis. Here, we suggest a fully automatic analysis pipeline based on the free software packages FSL and FreeSurfer.


Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence.

  • Richard McKinley‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

The detection of new or enlarged white-matter lesions is a vital task in the monitoring of patients undergoing disease-modifying treatment for multiple sclerosis. However, the definition of 'new or enlarged' is not fixed, and it is known that lesion-counting is highly subjective, with high degree of inter- and intra-rater variability. Automated methods for lesion quantification, if accurate enough, hold the potential to make the detection of new and enlarged lesions consistent and repeatable. However, the majority of lesion segmentation algorithms are not evaluated for their ability to separate radiologically progressive from radiologically stable patients, despite this being a pressing clinical use-case. In this paper, we explore the ability of a deep learning segmentation classifier to separate stable from progressive patients by lesion volume and lesion count, and find that neither measure provides a good separation. Instead, we propose a method for identifying lesion changes of high certainty, and establish on an internal dataset of longitudinal multiple sclerosis cases that this method is able to separate progressive from stable time-points with a very high level of discrimination (AUC = 0.999), while changes in lesion volume are much less able to perform this separation (AUC = 0.71). Validation of the method on two external datasets confirms that the method is able to generalize beyond the setting in which it was trained, achieving an accuracies of 75 % and 85 % in separating stable and progressive time-points.


Pneumococcal serotype determines growth and capsule size in human cerebrospinal fluid.

  • Annelies Müller‎ et al.
  • BMC microbiology‎
  • 2020‎

The polysaccharide capsule is a major virulence factor of S. pneumoniae in diseases such as meningitis. While some capsular serotypes are more often found in invasive disease, high case fatality rates are associated with those serotypes more commonly found in asymptomatic colonization. We tested whether growth patterns and capsule size in human cerebrospinal fluid depends on serotype using a clinical isolate of S. pneumoniae and its capsule switch mutants.


Clinical implications of serum neurofilament in newly diagnosed MS patients: A longitudinal multicentre cohort study.

  • Stefan Bittner‎ et al.
  • EBioMedicine‎
  • 2020‎

We aim to evaluate serum neurofilament light chain (sNfL), indicating neuroaxonal damage, as a biomarker at diagnosis in a large cohort of early multiple sclerosis (MS) patients.


Antineonatal Fc Receptor Antibody Treatment Ameliorates MOG-IgG-Associated Experimental Autoimmune Encephalomyelitis.

  • Jana Remlinger‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2022‎

Myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD) is a rare, autoimmune demyelinating CNS disorder, distinct from multiple sclerosis and neuromyelitis optica spectrum disorder. Characterized by pathogenic immunoglobulin G (IgG) antibodies against MOG, a potential treatment strategy for MOGAD is to reduce circulating IgG levels, e.g., by interference with the IgG recycling pathway mediated by the neonatal Fc receptor (FcRn). Although the optic nerve is often detrimentally involved in MOGAD, the effect of FcRn blockade on the visual pathway has not been assessed. Our objective was to investigate effects of a monoclonal anti-FcRn antibody in murine MOG-IgG-associated experimental autoimmune encephalomyelitis (EAE).


Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity.

  • Patrick Ostkamp‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (nNationMS = 946, nBIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-β-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.


CNS Antigen-Specific Neuroinflammation Attenuates Ischemic Stroke With Involvement of Polarized Myeloid Cells.

  • Kirsten Guse‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2022‎

Experimental studies indicate shared molecular pathomechanisms in cerebral hypoxia-ischemia and autoimmune neuroinflammation. This has led to clinical studies investigating the effects of immunomodulatory therapies approved in multiple sclerosis on inflammatory damage in stroke. So far, mutual and combined interactions of autoimmune, CNS antigen-specific inflammatory reactions and cerebral ischemia have not been investigated so far.


Modeling MOG Antibody-Associated Disorder and Neuromyelitis Optica Spectrum Disorder in Animal Models: Visual System Manifestations.

  • Jana Remlinger‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2023‎

Mechanisms of visual impairment in aquaporin 4 antibody (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disorder (MOGAD) are incompletely understood. The respective impact of optic nerve demyelination and primary and secondary retinal neurodegeneration are yet to be investigated in animal models.


Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis.

  • Lisa Thiele Née Schrewe‎ et al.
  • Journal of neuroinflammation‎
  • 2020‎

The multi-drug resistance transporter ABCG2, a member of the ATP-binding cassette (ABC) transporter family, mediates the efflux of different immunotherapeutics used in multiple sclerosis (MS), e.g., teriflunomide (teri), cladribine, and mitoxantrone, across cell membranes and organelles. Hence, the modulation of ABCG2 activity could have potential therapeutic implications in MS. In this study, we aimed at investigating the functional impact of abcg2 modulation on teri-induced effects in vitro and in vivo.


Vitamin D increases glucocorticoid efficacy via inhibition of mTORC1 in experimental models of multiple sclerosis.

  • Robert Hoepner‎ et al.
  • Acta neuropathologica‎
  • 2019‎

The limited efficacy of glucocorticoids (GCs) during therapy of acute relapses in multiple sclerosis (MS) leads to long-term disability. We investigated the potential of vitamin D (VD) to enhance GC efficacy and the mechanisms underlying this VD/GC interaction. In vitro, GC receptor (GR) expression levels were quantified by ELISA and induction of T cell apoptosis served as a functional readout to assess synergistic 1,25(OH)2D3 (1,25D)/GC effects. Experimental autoimmune encephalomyelitis (MOG35-55 EAE) was induced in mice with T cell-specific GR or mTORc1 deficiency. 25(OH)D (25D) levels were determined in two independent cohorts of MS patients with stable disease or relapses either responsive or resistant to GC treatment (initial cohort: n = 110; validation cohort: n = 85). Gene expression of human CD8+ T cells was analyzed by microarray (n = 112) and correlated with 25D serum levels. In vitro, 1,25D upregulated GR protein levels, leading to increased GC-induced T cell apoptosis. 1,25D/GC combination therapy ameliorated clinical EAE course more efficiently than respective monotherapies, which was dependent on GR expression in T cells. In MS patients from two independent cohorts, 25D deficiency was associated with GC-resistant relapses. Mechanistic studies revealed that synergistic 1,25D/GC effects on apoptosis induction were mediated by the mTOR but not JNK pathway. In line, 1,25D inhibited mTORc1 activity in murine T cells, and low 25D levels in humans were associated with a reduced expression of mTORc1 inhibiting tuberous sclerosis complex 1 in CD8+ T cells. GR upregulation by 1,25D and 1,25D/GC synergism in vitro and therapeutic efficacy in vivo were abolished in animals with a T cell-specific mTORc1 deficiency. Specific inhibition of mTORc1 by everolimus increased the efficacy of GC in EAE. 1,25D augments GC-mediated effects in vitro and in vivo in a T cell-specific, GR-dependent manner via mTORc1 inhibition. These data may have implications for improvement of anti-inflammatory GC therapy.


Evaluation of diagnostic criteria and red flags of myelin oligodendrocyte glycoprotein encephalomyelitis in a clinical routine cohort.

  • Krenar Veselaj‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2021‎

Myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) have been proposed to define "MOG encephalomyelitis" (MOG-EM), with published diagnostic and "red flag" criteria. We aimed to evaluate these criteria in a routine clinical setting.


Multiple sclerosis as a model to investigate SARS-CoV-2 effect on brain atrophy.

  • Michael Rebsamen‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Data on structural brain changes after infection with SARS-CoV-2 is sparse. We postulate multiple sclerosis as a model to study the effects of SARS-CoV-2 on brain atrophy due to the unique availability of longitudinal imaging data in this patient group, enabling assessment of intraindividual brain atrophy rates.


In Vivo and In Vitro Evidence for an Interplay between the Glucocorticoid Receptor and the Vitamin D Receptor Signaling.

  • Maud Bagnoud‎ et al.
  • Cells‎
  • 2023‎

Our previous work demonstrated that vitamin D (VitD) reduces experimental autoimmune encephalomyelitis (EAE) disease severity in wild-type (WT) but not in T cell-specific glucocorticoid (GC) receptor (GR)-deficient (GRlck) mice. This study aimed to investigate the interplay between the GR- and VitD receptor (VDR) signaling. In vivo, we confirmed the involvement of the GR in the VitD-induced effects in EAE using WT and GRlck mice. Furthermore, we observed that VitD-enhanced T cell apoptosis and T regulatory cell differentiation are diminished in vitro in CD3+ T cells of GRlck but not WT mice. Mechanistically, VitD does not appear to signal directly via the GR, as it does not bind to the GR, does not induce its nuclear translocation, and does not modulate the expression of two GR-induced genes. However, we observed that VitD enhances VDR protein expression in CD3+ T cells from WT but not GRlck mice in vitro, that the GR and the VDR spatially co-localize after VitD treatment, and that VitD does not modulate the expression of two VDR-induced genes in the absence of the GR. Our data suggest that a functional GR, specifically in T cells, is required for the VDR to signal appropriately to mediate the therapeutic effects of VitD.


Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks.

  • Richard McKinley‎ et al.
  • Scientific reports‎
  • 2021‎

Segmentation of white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. In this paper we explore segmentation solutions based on convolutional neural networks (CNNs) for providing fast, reliable segmentations of lesions and grey-matter structures in multi-modal MR imaging, and the performance of these methods when applied to out-of-centre data. We trained two state-of-the-art fully convolutional CNN architectures on the 2016 MSSEG training dataset, which was annotated by seven independent human raters: a reference implementation of a 3D Unet, and a more recently proposed 3D-to-2D architecture (DeepSCAN). We then retrained those methods on a larger dataset from a single centre, with and without labels for other brain structures. We quantified changes in performance owing to dataset shift, and changes in performance by adding the additional brain-structure labels. We also compared performance with freely available reference methods. Both fully-convolutional CNN methods substantially outperform other approaches in the literature when trained and evaluated in cross-validation on the MSSEG dataset, showing agreement with human raters in the range of human inter-rater variability. Both architectures showed drops in performance when trained on single-centre data and tested on the MSSEG dataset. When trained with the addition of weak anatomical labels derived from Freesurfer, the performance of the 3D Unet degraded, while the performance of the DeepSCAN net improved. Overall, the DeepSCAN network predicting both lesion and anatomical labels was the best-performing network examined.


Reliable brain morphometry from contrast-enhanced T1w-MRI in patients with multiple sclerosis.

  • Michael Rebsamen‎ et al.
  • Human brain mapping‎
  • 2023‎

Brain morphometry is usually based on non-enhanced (pre-contrast) T1-weighted MRI. However, such dedicated protocols are sometimes missing in clinical examinations. Instead, an image with a contrast agent is often available. Existing tools such as FreeSurfer yield unreliable results when applied to contrast-enhanced (CE) images. Consequently, these acquisitions are excluded from retrospective morphometry studies, which reduces the sample size. We hypothesize that deep learning (DL)-based morphometry methods can extract morphometric measures also from contrast-enhanced MRI. We have extended DL+DiReCT to cope with contrast-enhanced MRI. Training data for our DL-based model were enriched with non-enhanced and CE image pairs from the same session. The segmentations were derived with FreeSurfer from the non-enhanced image and used as ground truth for the coregistered CE image. A longitudinal dataset of patients with multiple sclerosis (MS), comprising relapsing remitting (RRMS) and primary progressive (PPMS) subgroups, was used for the evaluation. Global and regional cortical thickness derived from non-enhanced and CE images were contrasted to results from FreeSurfer. Correlation coefficients of global mean cortical thickness between non-enhanced and CE images were significantly larger with DL+DiReCT (r = 0.92) than with FreeSurfer (r = 0.75). When comparing the longitudinal atrophy rates between the two MS subgroups, the effect sizes between PPMS and RRMS were higher with DL+DiReCT both for non-enhanced (d = -0.304) and CE images (d = -0.169) than for FreeSurfer (non-enhanced d = -0.111, CE d = 0.085). In conclusion, brain morphometry can be derived reliably from contrast-enhanced MRI using DL-based morphometry tools, making additional cases available for analysis and potential future diagnostic morphometry tools.


How do patients enter the healthcare system after the first onset of multiple sclerosis symptoms? The influence of setting and physician specialty on speed of diagnosis.

  • Laura Barin‎ et al.
  • Multiple sclerosis (Houndmills, Basingstoke, England)‎
  • 2020‎

Diagnosing multiple sclerosis (MS) early is crucial to avoid future disability. However, potentially preventable delays in the diagnostic cascade from contact with a physician to definite diagnosis still occur and their causes are still unclear.


Is APOE ε4 associated with cognitive performance in early MS?

  • Sinah Engel‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2020‎

To assess the impact of APOE polymorphisms on cognitive performance in patients newly diagnosed with clinically isolated syndrome (CIS) or relapsing-remitting MS (RRMS).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: