Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers.

  • Martin Kächele‎ et al.
  • PloS one‎
  • 2015‎

Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an important signaling role in inflammatory processes. Since subclinical inflammation is a hallmark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis.


The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

  • Tina Sartorius‎ et al.
  • PloS one‎
  • 2015‎

It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity.


Protein kinase C delta (PKCδ) affects proliferation of insulin-secreting cells by promoting nuclear extrusion of the cell cycle inhibitor p21Cip1/WAF1.

  • Felicia Ranta‎ et al.
  • PloS one‎
  • 2011‎

High fat diet-induced hyperglycemia and palmitate-stimulated apoptosis was prevented by specific inhibition of protein kinase C delta (PKCδ) in β-cells. To understand the role of PKCδ in more detail the impact of changes in PKCδ activity on proliferation and survival of insulin-secreting cells was analyzed under stress-free conditions.


Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior.

  • Tina Sartorius‎ et al.
  • Diabetes‎
  • 2012‎

Fat and physical inactivity are the most evident factors in the pathogenesis of obesity, and fat quality seems to play a crucial role for measures of glucose homeostasis. However, the impact of dietary fat quality on brain function, behavior, and sleep is basically unknown. In this study, mice were fed a diet supplemented with either monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) and their impact on glucose homeostasis, locomotion, brain activity, and sleep behavior was evaluated. MUFAs and SFAs led to a significant increase in fat mass but only feeding of SFAs was accompanied by glucose intolerance in mice. Radiotelemetry revealed a significant decrease in cortical activity in SFA-mice whereas MUFAs even improved activity. SFAs decreased wakefulness and increased non-rapid eye movement sleep. An intracerebroventricular application of insulin promoted locomotor activity in MUFA-fed mice, whereas SFA-mice were resistant. In humans, SFA-enriched diet led to a decrease in hippocampal and cortical activity determined by functional magnetic resonance imaging techniques. Together, dietary intake of MUFAs promoted insulin action in the brain with its beneficial effects for cortical activity, locomotion, and sleep, whereas a comparable intake of SFAs acted as a negative modulator of brain activity in mice and humans.


Overexpression of kinase-negative protein kinase Cdelta in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction.

  • Anita M Hennige‎ et al.
  • Diabetes‎
  • 2010‎

In vitro models suggest that free fatty acid-induced apoptotic beta-cell death is mediated through protein kinase C (PKC)delta. To examine the role of PKCdelta signaling in vivo, transgenic mice overexpressing a kinase-negative PKCdelta (PKCdeltaKN) selectively in beta-cells were generated and analyzed for glucose homeostasis and beta-cell survival.


Enforced expression of protein kinase C in skeletal muscle causes physical inactivity, fatty liver and insulin resistance in the brain.

  • Anita M Hennige‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Among the multitude of dysregulated signalling mechanisms that comprise insulin resistance in divergent organs, the primary events in the development of type 2 diabetes are not well established. As protein kinase C (PKC) activation is consistently present in skeletal muscle of obese and insulin resistant subjects, we generated a transgenic mouse model that overexpresses constitutively active PKC-beta(2) in skeletal muscle to test whether activation of PKC is sufficient to cause an aversive whole-body phenotype. Upon this genetic modification, increased serine phosphorylation in Irs1 was observed and followed by impaired (3)H-deoxy-glucose uptake and muscle glycogen content, and transgenic mice exhibited insulin and glucose intolerance as they age. Muscle histochemistry revealed an increase in lipid deposition (intramyocellular lipids), and transgenic mice displayed impaired expression of transcriptional regulators of genes involved in fatty acid oxidation (peroxisome proliferator-activated receptor-gamma, PGC-1beta, acyl-CoA oxidase) and lipolysis (hormone-sensitive lipase). In this regard, muscle of transgenic mice exhibited a reduced capacity to oxidize palmitate and contained less mitochondria as determined by citrate synthase activity. Moreover, the phenotype included a profound decrease in the daily running distance, intra-abdominal and hepatic fat accumulation and impaired insulin action in the brain. Together, our data suggest that activation of a classical PKC in skeletal muscle as present in the pre-diabetic state is sufficient to cause disturbances in whole-body glucose and lipid metabolism followed by profound alterations in oxidative capacity, ectopic fat deposition and physical activity.


Dose-response effects on HbA1c and bodyweight reduction of survodutide, a dual glucagon/GLP-1 receptor agonist, compared with placebo and open-label semaglutide in people with type 2 diabetes: a randomised clinical trial.

  • Matthias Blüher‎ et al.
  • Diabetologia‎
  • 2024‎

The aim of this study was to assess the dose-response effects of the subcutaneous glucagon receptor/glucagon-like peptide-1 receptor dual agonist survodutide (BI 456906) on HbA1c levels and bodyweight reduction.


Sustained Treatment with Insulin Detemir in Mice Alters Brain Activity and Locomotion.

  • Tina Sartorius‎ et al.
  • PloS one‎
  • 2016‎

Recent studies have identified unique brain effects of insulin detemir (Levemir®). Due to its pharmacologic properties, insulin detemir may reach higher concentrations in the brain than regular insulin. This might explain the observed increased brain stimulation after acute insulin detemir application but it remained unclear whether chronic insulin detemir treatment causes alterations in brain activity as a consequence of overstimulation.


Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application.

  • Mona C Löffler‎ et al.
  • Molecular metabolism‎
  • 2021‎

A chronic imbalance of energy intake and energy expenditure results in excess fat storage. The obesity often caused by this overweight is detrimental to the health of millions of people. Understanding both sides of the energy balance equation and their counter-regulatory mechanisms is critical to the development of effective therapies to treat this epidemic.


Maternal whole blood cell miRNA-340 is elevated in gestational diabetes and inversely regulated by glucose and insulin.

  • Laura Stirm‎ et al.
  • Scientific reports‎
  • 2018‎

The number of pregnancies complicated by gestational diabetes (GDM) is increasing worldwide. To identify novel characteristics of GDM, we studied miRNA profiles of maternal and fetal whole blood cells (WBCs) from GDM and normal glucose tolerant (NGT) pregnant women matched for body mass index and maternal age. After adjustment for maternal weight gain and pregnancy week, we identified 29 mature micro-RNAs (miRNAs) up-regulated in GDM, one of which, i.e., miRNA-340, was validated by qPCR. mRNA and protein expression of PAIP1, a miRNA-340 target gene, was found down-regulated in GDM women, accordingly. In lymphocytes derived from the mothers' blood and treated in vitro, insulin increased and glucose reduced miRNA-340 expression. In fetal cord blood samples, no associations of miRNA-340 with maternal GDM were observed. Our results provide evidence for insulin-induced epigenetic, i.e., miRNA-dependent, programming of maternal WBCs in GDM.


Insulin promotes glycogen storage and cell proliferation in primary human astrocytes.

  • Martin Heni‎ et al.
  • PloS one‎
  • 2011‎

In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.


Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.

  • Tina Sartorius‎ et al.
  • PloS one‎
  • 2014‎

Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model.


The Gly385(388)Arg Polymorphism of the FGFR4 Receptor Regulates Hepatic Lipogenesis Under Healthy Diet.

  • Stefan Z Lutz‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2019‎

The effect of a lifestyle intervention to reduce liver fat content in nonalcoholic fatty liver disease in humans is influenced by genetics. We hypothesized that the amino acid exchange in human Gly388Arg (mouse homolog: Gly385Arg) in fibroblast growth factor receptor 4 (FGFR4), which regulates bile acid, lipid, and glucose metabolism, could determine hepatic lipid accumulation and insulin sensitivity. Mechanisms of this substitution were studied in mice under normal chow and high-fat diets.


Fetuin-A induces cytokine expression and suppresses adiponectin production.

  • Anita M Hennige‎ et al.
  • PloS one‎
  • 2008‎

The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin.


Prevalence of Overweight and Obesity, Its Complications, and Progression in a 10-Year Follow-Up in the Gutenberg Health Study (GHS).

  • Tanja Falter‎ et al.
  • Obesity facts‎
  • 2024‎

Overweight and obesity lead to numerous complications and their treatment. The associated costs represent a health and sociopolitical burden. Therefore, the development of overweight and obesity is of great importance for health policy.


Genetic ablation of cGMP-dependent protein kinase type I causes liver inflammation and fasting hyperglycemia.

  • Stefan Z Lutz‎ et al.
  • Diabetes‎
  • 2011‎

The nitric oxide/cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway regulates cell functions that play a pivotal role in the pathogenesis of type 2 diabetes. However, the impact of a dysfunction of this pathway for glucose metabolism in vivo is unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: