Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

The Gb3-enriched CD59/flotillin plasma membrane domain regulates host cell invasion by Pseudomonas aeruginosa.

  • Annette Brandel‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2021‎

The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


Septin barriers protect mammalian host cells against Pseudomonas aeruginosa invasion.

  • Sahaja Aigal‎ et al.
  • Cell reports‎
  • 2022‎

Septin GTPases polymerize into higher-ordered structures as a part of the cytoskeleton and are involved in interactions of the host with a wide spectrum of pathogens. Many pathogens foster an ambiguous relationship with septins. They exploit septins for uptake, but septins also prevent their intracellular replication and target them for autophagy. We demonstrate that septins are involved in a defense mechanism against the pathogen Pseudomonas aeruginosa, which enters cells via a lipid zippering mechanism relying on interaction of the lectin LecA with the glycosphingolipid Gb3 on the host membrane. LecA-dependent invagination of the plasma membrane triggers septin recruitment to the site of bacterial attachment. We also find a septin-dependent reinforcement of cortical actin at attachment sites. Atomic force microscopy reveals formation of a septin-dependent rigid barrier below the membrane, preventing bacterial penetration. Our data suggest that septin barriers represent a cellular defense against bacteria inducing membrane curvature for invasion.


The NephroCheck bedside system for detecting stage 3 acute kidney injury after open thoracoabdominal aortic repair.

  • Panagiotis Doukas‎ et al.
  • Scientific reports‎
  • 2023‎

Acute kidney injury (AKI) is a common complication after complex aortic procedures and it is associated with relevant mortality and morbidity. Biomarkers for early and specific AKI detection are lacking. The aim of this work is to investigate the reliability of the NephroCheck bedside system for diagnosing stage 3 AKI following open aortic surgery. In this prospective, multicenter, observational study,- https://clinicaltrials.gov/ct2/show/NCT04087161 -we included 45 patients undergoing open thoracoabdominal aortic repair. AKI risk (AKIRisk-Index) was calculated from urine samples at 5 timepoints: baseline, immediately postoperatively and at 12, 24, 48, and 72 h post-surgery. AKIs were classified according to the KDIGO criteria. Contributing factors were identified in univariable and multivariable logistic regression. Predictive ability was assessed with the area under the receiver operator curve (ROCAUC). Among 31 patients (68.8%) that developed AKIs, 21 (44.9%) developed stage-3 AKIs, which required dialysis. AKIs were correlated with increased in-hospital mortality (p = .006), respiratory complications (p < .001), sepsis (p < .001), and multi-organ dysfunction syndrome (p < .001). The AKIRisk-Index showed reliable diagnostic accuracy starting at 24 h post-surgery (ROCAUC: .8056, p = .001). In conclusion, starting at 24 h after open aortic repair, the NephroCheck system showed adequate diagnostic accuracy for detecting the patients at risk for stage 3 AKIs.


The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells.

  • Thorsten Eierhoff‎ et al.
  • PLoS pathogens‎
  • 2010‎

Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.


Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy.

  • Fabian Braun‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/Cas9-mediated α-galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified α-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.


Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation.

  • Catherine Cott‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery.


Increasing Temperature and Microplastic Fibers Jointly Influence Soil Aggregation by Saprobic Fungi.

  • Yun Liang‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Microplastic pollution and increasing temperature have potential to influence soil quality; yet little is known about their effects on soil aggregation, a key determinant of soil quality. Given the importance of fungi for soil aggregation, we investigated the impacts of increasing temperature and microplastic fibers on aggregation by carrying out a soil incubation experiment in which we inoculated soil individually with 5 specific strains of soil saprobic fungi. Our treatments were temperature (ambient temperature of 25°C or temperature increased by 3°C, abruptly versus gradually) and microplastic fibers (control and 0.4% w/w). We evaluated the percentage of water stable aggregates (WSA) and hydrolysis of fluorescein diacetate (FDA) as an indicator of fungal biomass. Microplastic fiber addition was the main factor influencing the WSA, decreasing the percentage of WSA except in soil incubated with strain RLCS 01, and mitigated the effects of temperature or even caused more pronounced decrease in WSA under increasing temperature. We also observed clear differences between temperature change patterns. Our study shows that the interactive effects of warming and microplastic fibers are important to consider when evaluating effects of global change on soil aggregation and potentially other soil processes.


The Pseudomonas aeruginosa Lectin LecB Causes Integrin Internalization and Inhibits Epithelial Wound Healing.

  • Roland Thuenauer‎ et al.
  • mBio‎
  • 2020‎

The opportunistic bacterium Pseudomonas aeruginosa produces the fucose-specific lectin LecB, which has been identified as a virulence factor. LecB has a tetrameric structure with four opposing binding sites and has been shown to act as a cross-linker. Here, we demonstrate that LecB strongly binds to the glycosylated moieties of β1-integrins on the basolateral plasma membrane of epithelial cells and causes rapid integrin endocytosis. Whereas internalized integrins were degraded via a lysosomal pathway, washout of LecB restored integrin cell surface localization, thus indicating a specific and direct action of LecB on integrins to bring about their endocytosis. Interestingly, LecB was able to trigger uptake of active and inactive β1-integrins and also of complete α3β1-integrin-laminin complexes. We provide a mechanistic explanation for this unique endocytic process by showing that LecB has the additional ability to recognize fucose-bearing glycosphingolipids and causes the formation of membrane invaginations on giant unilamellar vesicles. In cells, LecB recruited integrins to these invaginations by cross-linking integrins and glycosphingolipids. In epithelial wound healing assays, LecB specifically cleared integrins from the surface of cells located at the wound edge and blocked cell migration and wound healing in a dose-dependent manner. Moreover, the wild-type P. aeruginosa strain PAO1 was able to loosen cell-substrate adhesion in order to crawl underneath exposed cells, whereas knockout of LecB significantly reduced crawling events. Based on these results, we suggest that LecB has a role in disseminating bacteria along the cell-basement membrane interface.IMPORTANCEPseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the leading causes of nosocomial infections. P. aeruginosa is able to switch between planktonic, intracellular, and biofilm-based lifestyles, which allows it to evade the immune system as well as antibiotic treatment. Hence, alternatives to antibiotic treatment are urgently required to combat P. aeruginosa infections. Lectins, like the fucose-specific LecB, are promising targets, because removal of LecB resulted in decreased virulence in mouse models. Currently, several research groups are developing LecB inhibitors. However, the role of LecB in host-pathogen interactions is not well understood. The significance of our research is in identifying cellular mechanisms of how LecB facilitates P. aeruginosa infection. We introduce LecB as a new member of the list of bacterial molecules that bind integrins and show that P. aeruginosa can move forward underneath attached epithelial cells by loosening cell-basement membrane attachment in a LecB-dependent manner.


Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi.

  • Anika Lehmann‎ et al.
  • Scientific reports‎
  • 2019‎

The fungal mycelium represents the essence of the fungal lifestyle, and understanding how a mycelium is constructed is of fundamental importance in fungal biology and ecology. Previous studies have examined initial developmental patterns or focused on a few strains, often mutants of model species, and frequently grown under non-harmonized growth conditions; these factors currently collectively hamper systematic insights into rules of mycelium architecture. To address this, we here use a broader suite of fungi (31 species including members of the Ascomycota, Basidiomycota and Mucoromycota), all isolated from the same soil, and tested for ten architectural traits under standardized laboratory conditions. We find great variability in traits among the saprobic fungal species, and detect several clear tradeoffs in mycelial architecture, for example between internodal length and hyphal diameter. Within the constraints so identified, we document otherwise great versatility in mycelium architecture in this set of fungi, and there was no evidence of trait 'syndromes' as might be expected. Our results point to an important dimension of fungal properties with likely consequences for coexistence within local communities, as well as for functional complementarity (e.g. decomposition, soil aggregation).


Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass.

  • Yudi M Lozano‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (Daucus carota) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.


The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII.

  • Shuangshuang Zheng‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2017‎

The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkIIY221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to CrkY221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkIIY221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes.


A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells.

  • Jan N Galle‎ et al.
  • Nature communications‎
  • 2019‎

In mammalian cells, the internal and external leaflets of the plasma membrane (PM) possess different phospholipids. Phosphatidylserine (PS) is normally confined to the inner (cytoplasmic) membrane leaflet. Here we report that the adhesin CPn0473 of the human pathogenic bacterium Chlamydia pneumoniae (Cpn) binds to the PM of human cells and induces PS externalization but unexpectedly not apoptosis. PS externalization is increased in human cells exposed to infectious Cpn cells expressing increased CPn0473 and reduced in exposure to Cpn expressing decreased CPn0473. CPn0473 binds specifically to synthetic membranes carrying PS and stimulates pore formation. Asymmetric giant unilamellar vesicles (GUVs) in which PS is restricted to the inner leaflet reveal that CPn0473 induces PS externalization in the absence of other proteins. Thus our identification of CPn0473 as a bacterial PS translocator capable of specific and apoptosis-independent PS externalization during infection extends the spectrum of mechanisms intracellular pathogens use to enter host cells.


Fungal Traits Important for Soil Aggregation.

  • Anika Lehmann‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of soils and soil biota. Among them, filamentous saprobic fungi have well-documented effects on soil aggregation. However, it is unclear what properties, or traits, determine the overall positive effect of fungi on soil aggregation. To achieve progress, it would be helpful to systematically investigate a broad suite of fungal species for their trait expression and the relation of these traits to soil aggregation. Here, we apply a trait-based approach to a set of 15 traits measured under standardized conditions on 31 fungal strains including Ascomycota, Basidiomycota, and Mucoromycota, all isolated from the same soil. We find large differences among these fungi in their ability to aggregate soil, including neutral to positive effects, and we document large differences in trait expression among strains. We identify biomass density, i.e., the density with which a mycelium grows (positive effects), leucine aminopeptidase activity (negative effects) and phylogeny as important factors explaining differences in soil aggregate formation (SAF) among fungal strains; importantly, growth rate was not among the important traits. Our results point to a typical suite of traits characterizing fungi that are good soil aggregators, and our findings illustrate the power of employing a trait-based approach to unravel biological mechanisms underpinning soil aggregation. Such an approach could now be extended also to other soil biota groups. In an applied context of restoration and agriculture, such trait information can inform management, for example to prioritize practices that favor the expression of more desirable fungal traits.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: