Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits.

  • Nathalie Chami‎ et al.
  • American journal of human genetics‎
  • 2016‎

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.


Detailed analysis of association between common single nucleotide polymorphisms and subclinical atherosclerosis: The Multi-ethnic Study of Atherosclerosis.

  • Jose D Vargas‎ et al.
  • Data in brief‎
  • 2016‎

Previously identified single nucleotide polymorphisms (SNPs) in genome wide association studies (GWAS) of cardiovascular disease (CVD) in participants of mostly European descent were tested for association with subclinical cardiovascular disease (sCVD), coronary artery calcium score (CAC) and carotid intima media thickness (CIMT) in the Multi-Ethnic Study of Atherosclerosis (MESA). The data in this data in brief article correspond to the article Common Genetic Variants and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis [1]. This article includes the demographic information of the participants analyzed in the article as well as graphical displays and data tables of the association of the selected SNPs with CAC and of the meta-analysis across ethnicities of the association of CIMT-c (common carotid), CIMT-I (internal carotid), CAC-d (CAC as dichotomous variable with CAC>0) and CAC-c (CAC as continuous variable, the log of the raw CAC score plus one) and CVD. The data tables corresponding to the 9p21 fine mapping experiment as well as the power calculations referenced in the article are also included.


Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry.

  • Jennifer A Nettleton‎ et al.
  • Human molecular genetics‎
  • 2015‎

Obesity is highly heritable. Genetic variants showing robust associations with obesity traits have been identified through genome-wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphisms were genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjusted WHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjusted WHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.


Genome of The Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels.

  • Elisabeth M van Leeuwen‎ et al.
  • Nature communications‎
  • 2015‎

Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of The Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.


Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

  • Tuomas O Kilpeläinen‎ et al.
  • Nature communications‎
  • 2019‎

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.


Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.

  • Phuwanat Sakornsakolpat‎ et al.
  • Nature genetics‎
  • 2019‎

Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 × 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.


Meta-analysis of exome array data identifies six novel genetic loci for lung function.

  • Victoria E Jackson‎ et al.
  • Wellcome open research‎
  • 2018‎

Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.


Variant Discovery and Fine Mapping of Genetic Loci Associated with Blood Pressure Traits in Hispanics and African Americans.

  • Nora Franceschini‎ et al.
  • PloS one‎
  • 2016‎

Despite the substantial burden of hypertension in US minority populations, few genetic studies of blood pressure have been conducted in Hispanics and African Americans, and it is unclear whether many of the established loci identified in European-descent populations contribute to blood pressure variation in non-European descent populations. Using the Metabochip array, we sought to characterize the genetic architecture of previously identified blood pressure loci, and identify novel cardiometabolic variants related to systolic and diastolic blood pressure in a multi-ethnic US population including Hispanics (n = 19,706) and African Americans (n = 18,744). Several known blood pressure loci replicated in African Americans and Hispanics. Fourteen variants in three loci (KCNK3, FGF5, ATXN2-SH2B3) were significantly associated with blood pressure in Hispanics. The most significant diastolic blood pressure variant identified in our analysis, rs2586886/KCNK3 (P = 5.2 x 10-9), also replicated in independent Hispanic and European-descent samples. African American and trans-ethnic meta-analysis data identified novel variants in the FGF5, ULK4 and HOXA-EVX1 loci, which have not been previously associated with blood pressure traits. Our identification and independent replication of variants in KCNK3, a gene implicated in primary hyperaldosteronism, as well as a variant in HOTTIP (HOXA-EVX1) suggest that further work to clarify the roles of these genes may be warranted. Overall, our findings suggest that loci identified in European descent populations also contribute to blood pressure variation in diverse populations including Hispanics and African Americans-populations that are understudied for hypertension genetic risk factors.


Fine mapping the CETP region reveals a common intronic insertion associated to HDL-C.

  • Elisabeth M van Leeuwen‎ et al.
  • NPJ aging and mechanisms of disease‎
  • 2015‎

Individuals with exceptional longevity and their offspring have significantly larger high-density lipoprotein concentrations (HDL-C) particle sizes due to the increased homozygosity for the I405V variant in the cholesteryl ester transfer protein (CETP) gene. In this study, we investigate the association of CETP and HDL-C further to identify novel, independent CETP variants associated with HDL-C in humans.


Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function.

  • Dana B Hancock‎ et al.
  • PLoS genetics‎
  • 2012‎

Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1)), and its ratio to forced vital capacity (FEV(1)/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV(1) and FEV(1)/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = )5.00×10(-11)), HLA-DQB1 and HLA-DQA2 (smallest P(JMA = )4.35×10(-9)), and KCNJ2 and SOX9 (smallest P(JMA = )1.28×10(-8)) were associated with FEV(1)/FVC or FEV(1) in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.


Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees.

  • Wei-Min Chen‎ et al.
  • BMC proceedings‎
  • 2011‎

Compared to genome-wide association analysis, linkage analysis is less influenced by allelic heterogeneity. The use of linkage information in large families should provide a great opportunity to identify less frequent variants. We perform a linkage scan for both dichotomous and quantitative traits in eight extended families. For the dichotomous trait, we identified one linkage region on chromosome 4q. For quantitative traits, we identified two regions on chromosomes 4q and 6p for Q1 and one region on chromosome 6q for Q2. To identify variants that contribute to these linkage signals, we performed standard association analysis in genomic regions of interest. We also screened less frequent variants in the linkage region based on the risk ratio and phenotypic distribution among carriers. Two rare variants at VEGFC and one common variant on chromosome 4q conferred the greatest risk for the dichotomous trait. We identified two rare variants on chromosomes 4q (VEGFC) and 6p (VEGFA) that explain 12.4% of the total phenotypic variance of trait Q1. We also identified four variants (including one at VNN3) on chromosome 6q that are able to drop the linkage LOD from 3.7 to 1.0. These results suggest that the use of classical linkage and association methods in large families can provide a useful approach to identifying variants that are responsible for diseases and complex traits in families.


Population structure of Hispanics in the United States: the multi-ethnic study of atherosclerosis.

  • Ani Manichaikul‎ et al.
  • PLoS genetics‎
  • 2012‎

Using ~60,000 SNPs selected for minimal linkage disequilibrium, we perform population structure analysis of 1,374 unrelated Hispanic individuals from the Multi-Ethnic Study of Atherosclerosis (MESA), with self-identification corresponding to Central America (n = 93), Cuba (n = 50), the Dominican Republic (n = 203), Mexico (n = 708), Puerto Rico (n = 192), and South America (n = 111). By projection of principal components (PCs) of ancestry to samples from the HapMap phase III and the Human Genome Diversity Panel (HGDP), we show the first two PCs quantify the Caucasian, African, and Native American origins, while the third and fourth PCs bring out an axis that aligns with known South-to-North geographic location of HGDP Native American samples and further separates MESA Mexican versus Central/South American samples along the same axis. Using k-means clustering computed from the first four PCs, we define four subgroups of the MESA Hispanic cohort that show close agreement with self-identification, labeling the clusters as primarily Dominican/Cuban, Mexican, Central/South American, and Puerto Rican. To demonstrate our recommendations for genetic analysis in the MESA Hispanic cohort, we present pooled and stratified association analysis of triglycerides for selected SNPs in the LPL and TRIB1 gene regions, previously reported in GWAS of triglycerides in Caucasians but as yet unconfirmed in Hispanic populations. We report statistically significant evidence for genetic association in both genes, and we further demonstrate the importance of considering population substructure and genetic heterogeneity in genetic association studies performed in the United States Hispanic population.


Discovery and fine-mapping of loci associated with MUFAs through trans-ethnic meta-analysis in Chinese and European populations.

  • Yao Hu‎ et al.
  • Journal of lipid research‎
  • 2017‎

MUFAs are unsaturated FAs with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels are associated with cardiometabolic disorders, including CVD, T2D, and metabolic syndrome (MS). Previous genome-wide association studies (GWASs) have identified seven loci for plasma and erythrocyte palmitoleic and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential functional variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in more than 15,000 participants of Chinese and European ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor) ≥ 8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor) ≥ 6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99% credible set was reduced from 16 (covering 94.8 kb) to 5 (covering 19.6 kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR, and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and the trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were in unsaturated FA metabolism and signaling pathways. Our findings provide novel insight into the genetic basis relevant to MUFA metabolism and biology.


Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations.

  • Ming-Huei Chen‎ et al.
  • Cell‎
  • 2020‎

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


The Polygenic and Monogenic Basis of Blood Traits and Diseases.

  • Dragana Vuckovic‎ et al.
  • Cell‎
  • 2020‎

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts.

  • Matthew Moll‎ et al.
  • The Lancet. Respiratory medicine‎
  • 2020‎

Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes.


Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

  • Daniel Taliun‎ et al.
  • Nature‎
  • 2021‎

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Proteome-Wide Association Studies for Blood Lipids and Comparison with Transcriptome-Wide Association Studies.

  • Daiwei Zhang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of mortality worldwide. Although genome-wide association studies (GWAS) have discovered hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids remain unknown. To better understand the biological processes underlying lipid metabolism, we investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in blood. We trained protein prediction models based on samples in the Multi-Ethnic Study of Atherosclerosis (MESA) and applied them to conduct proteome-wide association studies (PWAS) for lipids using the Global Lipids Genetics Consortium (GLGC) data. Of the 749 proteins tested, 42 were significantly associated with at least one lipid trait. Furthermore, we performed transcriptome-wide association studies (TWAS) for lipids using 9,714 gene expression prediction models trained on samples from peripheral blood mononuclear cells (PBMCs) in MESA and 49 tissues in the Genotype-Tissue Expression (GTEx) project. We found that although PWAS and TWAS can show different directions of associations in an individual gene, 40 out of 49 tissues showed a positive correlation between PWAS and TWAS signed p-values across all the genes, which suggests a high-level consistency between proteome-lipid associations and transcriptome-lipid associations.


Predicted Proteome Association Studies of Breast, Prostate, Ovarian, and Endometrial Cancers Implicate Plasma Protein Regulation in Cancer Susceptibility.

  • Isabelle Gregga‎ et al.
  • Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology‎
  • 2023‎

Predicting protein levels from genotypes for proteome-wide association studies (PWAS) may provide insight into the mechanisms underlying cancer susceptibility.


Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels.

  • Elisabeth M van Leeuwen‎ et al.
  • Journal of medical genetics‎
  • 2016‎

So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: