Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Systemic Factors Trigger Vasculature Cells to Drive Notch Signaling and Neurogenesis in Neural Stem Cells in the Adult Brain.

  • Ruihe Lin‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2019‎

It is well documented that adult neural stem cells (NSCs) residing in the subventricular zone (SVZ) and the subgranular zone (SGZ) are induced to proliferate and differentiate into new neurons after injury such as stroke and hypoxia. However, the role of injury-related cues in driving this process and the means by which they communicate with NSCs remains largely unknown. Recently, the coupling of neurogenesis and angiogenesis and the extensive close contact between vascular cells and other niche cells, known as the neurovascular unit (NVU), has attracted interest. Further facilitating communication between blood and NSCs is a permeable blood-brain-barrier (BBB) present in most niches, making vascular cells a potential conduit between systemic signals, such as vascular endothelial growth factor (VEGF), and NSCs in the niche, which could play an important role in regulating neurogenesis. We show that the leaky BBB in stem cell niches of the intact and stroke brain can respond to circulating VEGF165 to drive induction of the Notch ligand DLL4 (one of the most important cues in angiogenesis) in endothelial cells (ECs), pericytes, and further induce significant proliferation and neurogenesis of stem cells. Stem Cells 2019;37:395-406.


LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury.

  • Lan Cheng‎ et al.
  • Neurobiology of disease‎
  • 2021‎

Chondroitin sulfate proteoglycans (CSPGs), up-regulated in and around the lesion after traumatic spinal cord injury (SCI), are key extracellular matrix inhibitory molecules that limit axon growth and consequent recovery of function. CSPG-mediated inhibition occurs via interactions with axonal receptors, including leukocyte common antigen- related (LAR) phosphatase. We tested the effects of a novel LAR inhibitory peptide in rats after hemisection at cervical level 2, a SCI model in which bulbospinal inspiratory neural circuitry originating in the medullary rostral ventral respiratory group (rVRG) becomes disconnected from phrenic motor neuron (PhMN) targets in cervical spinal cord, resulting in persistent partial-to-complete diaphragm paralysis. LAR peptide was delivered by a soaked gelfoam, which was placed directly over the injury site immediately after C2 hemisection and replaced at 1 week post-injury. Axotomized rVRG axons originating in ipsilateral medulla or spared rVRG fibers originating in contralateral medulla were separately assessed by anterograde tracing via AAV2-mCherry injection into rVRG. At 8 weeks post-hemisection, LAR peptide significantly improved ipsilateral hemidiaphragm function, as assessed in vivo with electromyography recordings. LAR peptide promoted robust regeneration of ipsilateral-originating rVRG axons into and through the lesion site and into intact caudal spinal cord to reach PhMNs located at C3-C5 levels. Furthermore, regenerating rVRG axons re-established putative monosynaptic connections with their PhMNs targets. In addition, LAR peptide stimulated robust sprouting of both modulatory serotonergic axons and contralateral-originating rVRG fibers within the PhMN pool ipsilateral/caudal to the hemisection. Our study demonstrates that targeting LAR-based axon growth inhibition promotes multiple forms of respiratory neural circuit plasticity and provides a new peptide-based therapeutic strategy to ameliorate the devastating respiratory consequences of SCI.


Combination of a Gellan Gum-Based Hydrogel With Cell Therapy for the Treatment of Cervical Spinal Cord Injury.

  • Eduardo D Gomes‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Cervical spinal cord trauma represents more than half of the spinal cord injury (SCI) cases worldwide. Respiratory compromise, as well as severe limb motor deficits, are among the main consequences of cervical lesions. In the present work, a Gellan Gum (GG)-based hydrogel modified with GRGDS peptide, together with adipose tissue-derived stem/stromal cells (ASCs) and olfactory ensheathing cells (OECs), was used as a therapeutic strategy after a C2 hemisection SCI in rats. Hydrogel or cells alone, and a group without treatment, were also tested. Four weeks after injury, compound muscle action potentials (CMAPs) were performed to assess functional phrenic motor neuron (PhMN) innervation of the diaphragm; no differences were observed amongst groups, confirming that the PhMN pool located between C3 and C5 was not affected by the C2 injury or by the treatments. In the same line, the vast majority of diaphragmatic neuromuscular junctions remained intact. Five weeks post-injury, inspiratory bursting of the affected ipsilateral hemidiaphragm was evaluated through EMG recordings of dorsal, medial and ventral subregions of the muscle. All treatments significantly increased EMG amplitude at the ventral portion in comparison to untreated animals, but only the combinatorial group presented increased EMG amplitude at the medial portion of the hemidiaphragm. No differences were observed in forelimb motor function, neither in markers for axonal regrowth (neuronal tracers), astrogliosis (GFAP) and inflammatory cells (CD68). Moreover, using Von Frey testing of mechanical allodynia, it was possible to find a significant effect of the group combining hydrogel and cells on hypersensitivity; rats with a SCI displayed an increased response of the contralateral forelimb to a normally innocuous mechanical stimulus, but after treatment with the combinatorial therapy this behavior was reverted almost to the levels of uninjured controls. These results suggest that our therapeutic approach may have beneficial effects on both diaphragmatic recovery and sensory function.


EphrinB2 knockdown in cervical spinal cord preserves diaphragm innervation in a mutant SOD1 mouse model of ALS.

  • Mark W Urban‎ et al.
  • eLife‎
  • 2024‎

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.


Inhibiting drug efflux transporters improves efficacy of ALS therapeutics.

  • Michael R Jablonski‎ et al.
  • Annals of clinical and translational neurology‎
  • 2014‎

Research identified promising therapeutics in cell models of Amyotrophic Lateral Sclerosis (ALS), but there is limited progress translating effective treatments to animal models and patients, and ALS remains a disease with no effective treatment. One explanation stems from an acquired pharmacoresistance driven by the drug efflux transporters P-glycoprotein (P-gp) and breast cancer-resistant protein (BCRP), which we have shown are selectively upregulated at the blood-brain and spinal cord barrier (BBB/BSCB) in ALS mice and patients. Pharmacoresistance is well appreciated in other brain diseases, but overlooked in ALS despite many failures in clinical trials.


Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability.

  • Ruihe Lin‎ et al.
  • Neurobiology of disease‎
  • 2015‎

Previous studies have established the subventricular (SVZ) and subgranular (SGZ) zones as sites of neurogenesis in the adult forebrain (Doetsch et al., 1999a; Doetsch, 2003a). Work from our laboratory further indicated that midline structures known as circumventricular organs (CVOs) also serve as adult neural stem cell (NSC) niches (Bennett et al., 2009, 2010). In the quiescent rat brain, NSC proliferation remains low in all of these sites. Therefore, we recently examined whether ischemic stroke injury (MCAO) or sustained intraventricular infusion of the mitogen bFGF could trigger an up-regulation in NSC proliferation, inducing neurogenesis and gliogenesis. Our data show that both stroke and bFGF induce a dramatic and long-lasting (14day) rise in the proliferation (BrdU+) of nestin+Sox2+GFAP+ NSCs capable of differentiating into Olig2+ glial progenitors, GFAP+nestin-astrocyte progenitors and Dcx+ neurons in the SVZ and CVOs. Moreover, because of the upsurge in NSC number, it was possible to detect for the first time several novel stem cell niches along the third (3V) and fourth (4V) ventricles. Importantly, a common feature of all brain niches was a rich vasculature with a blood-brain-barrier (BBB) that was highly permeable to systemically injected sodium fluorescein. These data indicate that stem cell niches are more extensive than once believed and exist at multiple sites along the entire ventricular system, consistent with the potential for widespread neurogenesis and gliogenesis in the adult brain, particularly after injury. We further suggest that because of their leaky BBB, stem cell niches are well-positioned to respond to systemic injury-related cues which may be important for stem-cell mediated brain repair.


Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model.

  • Gregory V Goldmacher‎ et al.
  • PloS one‎
  • 2013‎

In this study, rat bone marrow stromal stem cells (BMSCs) were tracked after IV administration to rats with experimental stroke caused by middle cerebral artery occlusion (MCAO). In addition, the effects of BMSC treatment on blood cell composition, brain glia and sensorimotor behavior was studied and compared to that which occurred spontaneously during the normal recovery process after stroke. We found that the vast majority of radiolabeled or fluorescently labeled BMSCs traveled to and remained in peripheral organs (lungs, spleen, liver) 3 days after IV injection in the MCAO rat. Once in the circulation, BMSCs also produced rapid alterations in host blood cell composition, increasing both neutrophil and total white blood cell count by 6 hours post-injection. In contrast, few injected BMSCs traveled to the brain and almost none endured there long term. Nonetheless, BMSC treatment produced dramatic changes in the number and activation of brain astroglia and microglia, particularly in the region of the infarct. These cellular changes were correlated with a marked improvement in performance on tests of sensory and motor function as compared to the partial recovery of function seen in PBS-injected control rats. We conclude that the notable recovery in function observed after systemic administration of BMSCs to MCAO rats is likely due to the cellular changes in blood and/or brain cell number, activation state and their cytokine/growth factor products.


Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease.

  • Angelo C Lepore‎ et al.
  • Nature neuroscience‎
  • 2008‎

Cellular abnormalities in amyotrophic lateral sclerosis (ALS) are not limited to motor neurons. Astrocyte dysfunction also occurs in human ALS and transgenic rodents expressing mutant human SOD1 protein (SOD1(G93A)). Here we investigated focal enrichment of normal astrocytes using transplantation of lineage-restricted astrocyte precursors, called glial-restricted precursors (GRPs). We transplanted GRPs around cervical spinal cord respiratory motor neuron pools, the principal cells whose dysfunction precipitates death in ALS. GRPs survived in diseased tissue, differentiated efficiently into astrocytes and reduced microgliosis in the cervical spinal cords of SOD1(G93A) rats. GRPs also extended survival and disease duration, attenuated motor neuron loss and slowed declines in forelimb motor and respiratory physiological functions. Neuroprotection was mediated in part by the primary astrocyte glutamate transporter GLT1. These findings indicate the feasibility and efficacy of transplantation-based astrocyte replacement and show that targeted multisegmental cell delivery to the cervical spinal cord is a promising therapeutic strategy for slowing focal motor neuron loss associated with ALS.


Protein Tyrosine Phosphatase σ Inhibitory Peptide Promotes Recovery of Diaphragm Function and Sprouting of Bulbospinal Respiratory Axons after Cervical Spinal Cord Injury.

  • Mark W Urban‎ et al.
  • Journal of neurotrauma‎
  • 2020‎

Damage to respiratory neural circuitry and consequent loss of diaphragm function is a major cause of morbidity and mortality after cervical spinal cord injury (SCI). Upon SCI, inspiratory signals originating in the medullary rostral ventral respiratory group (rVRG) become disrupted from their phrenic motor neuron (PhMN) targets, resulting in diaphragm paralysis. Limited growth of both damaged and spared axon populations occurs after central nervous system trauma attributed, in part, to expression of various growth inhibitory molecules, some that act through direct interaction with the protein tyrosine phosphatase sigma (PTPσ) receptor located on axons. In the rat model of C2 hemisection SCI, we aimed to block PTPσ signaling to investigate potential mechanisms of axon plasticity and respiratory recovery using a small molecule peptide mimetic that inhibits PTPσ. The peptide was soaked into a biocompatible gelfoam and placed directly over the injury site immediately after hemisection and replaced with a freshly soaked piece 1 week post-SCI. At 8 weeks post-hemisection, PTPσ peptide significantly improved ipsilateral hemidiaphragm function, as assessed in vivo with electromyography recordings. PTPσ peptide did not promote regeneration of axotomized rVRG fibers originating in ipsilateral medulla, as assessed by tracing after adeno-associated virus serotype 2/mCherry injection into the rVRG. Conversely, PTPσ peptide stimulated robust sprouting of contralateral-originating rVRG fibers and serotonergic axons within the PhMN pool ipsilateral to hemisection. Further, relesion through the hemisection did not compromise diaphragm recovery, suggesting that PTPσ peptide-induced restoration of function was attributed to plasticity of spared axon pathways descending in contralateral spinal cord. These data demonstrate that inhibition of PTPσ signaling can promote significant recovery of diaphragm function after SCI by stimulating plasticity of critical axon populations spared by the injury and consequently enhancing descending excitatory input to PhMNs.


Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture.

  • Eric Wildon Kostuk‎ et al.
  • Glia‎
  • 2019‎

Parkinson's disease (PD) is characterized by the selective degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SN), while the neighboring ventral tegmental area (VTA) is relatively spared. The mechanisms underlying this selectivity are not fully understood. Here, we demonstrate a vital role for subregional astrocytes in the protection of VTA DA neurons. We found that elimination of astrocytes in vitro exposes a novel vulnerability of presumably protected VTA DA neurons to the PD mimetic toxin MPP+ , as well as exacerbation of SN DA neuron vulnerability. Conversely, VTA astrocytes protected both VTA and SN DA neurons from MPP+ toxicity in a dose dependent manner, and this protection was mediated via a secreted molecule. RNAseq analysis of isolated VTA and SN astrocytes demonstrated a vast array of transcriptional differences between these two closely related populations demonstrating regional heterogeneity of midbrain astrocytes. We found that GDF15, a member of the TGFβ superfamily which is expressed 230-fold higher in VTA astrocytes than SN, recapitulates neuroprotection of both rat midbrain and iPSC-derived DA neurons, whereas its knockdown conversely diminished this effect. Neuroprotection was likely mediated through the GRFAL receptor expressed on DA neurons. Together; these results suggest that subregional differences in astrocytes underlie the selective degeneration or protection of DA neurons in PD.


Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function.

  • Biswarup Ghosh‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

We developed an innovative biomaterial-based approach to repair the critical neural circuitry that controls diaphragm activation by locally delivering brain-derived neurotrophic factor (BDNF) to injured cervical spinal cord. BDNF can be used to restore respiratory function via a number of potential repair mechanisms; however, widespread BDNF biodistribution resulting from delivery methods such as systemic injection or lumbar puncture can lead to inefficient drug delivery and adverse side effects. As a viable alternative, we developed a novel hydrogel-based system loaded with polysaccharide-BDNF particles self-assembled by electrostatic interactions that can be safely implanted in the intrathecal space for achieving local BDNF delivery with controlled dosing and duration. Implantation of BDNF hydrogel after C4/C5 contusion-type spinal cord injury (SCI) in female rats robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential and electromyography amplitudes. However, BDNF hydrogel did not decrease lesion size or degeneration of cervical motor neuron soma, suggesting that its therapeutic mechanism of action was not neuroprotection within spinal cord. Interestingly, BDNF hydrogel significantly preserved diaphragm innervation by phrenic motor neurons (PhMNs), as assessed by detailed neuromuscular junction morphological analysis and retrograde PhMN labeling from diaphragm using cholera toxin B. Furthermore, BDNF hydrogel enhanced the serotonergic axon innervation of PhMNs that plays an important role in modulating PhMN excitability. Our findings demonstrate that local BDNF hydrogel delivery is a robustly effective and safe strategy to restore diaphragm function after SCI. In addition, we demonstrate novel therapeutic mechanisms by which BDNF can repair respiratory neural circuitry.SIGNIFICANCE STATEMENT Respiratory compromise is a leading cause of morbidity and mortality following traumatic spinal cord injury (SCI). We used an innovative biomaterial-based drug delivery system in the form of a hydrogel that can be safely injected into the intrathecal space for achieving local delivery of brain-derived neurotrophic factor (BDNF) with controlled dosing and duration, while avoiding side effects associated with other delivery methods. In a clinically relevant rat model of cervical contusion-type SCI, BDNF hydrogel robustly and persistently improved diaphragmatic respiratory function by enhancing phrenic motor neuron (PhMN) innervation of the diaphragm neuromuscular junction and by increasing serotonergic innervation of PhMNs in ventral horn of the cervical spinal cord. These exciting findings demonstrate that local BDNF hydrogel delivery is a safe and robustly effective strategy to maintain respiratory function after cervical SCI.


Targeting TNFα produced by astrocytes expressing amyotrophic lateral sclerosis-linked mutant fused in sarcoma prevents neurodegeneration and motor dysfunction in mice.

  • Brigid K Jensen‎ et al.
  • Glia‎
  • 2022‎

Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.


Intestinal neuropod cell GUCY2C regulates visceral pain.

  • Joshua R Barton‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.


A stress-free strategy to correct point mutations in patient iPS cells.

  • Jingli Cai‎ et al.
  • Stem cell research‎
  • 2021‎

When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.


Regional microglia are transcriptionally distinct but similarly exacerbate neurodegeneration in a culture model of Parkinson's disease.

  • Eric Wildon Kostuk‎ et al.
  • Journal of neuroinflammation‎
  • 2018‎

Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DA) neurons of the substantia nigra pars compacta (SN) while neighboring ventral tegmental area (VTA) DA neurons are relatively spared. Mechanisms underlying the selective protection of the VTA and susceptibility of the SN are still mostly unknown. Here, we demonstrate the importance of balance between astrocytes and microglia in the susceptibility of SN DA neurons to the PD mimetic toxin 1-methyl-4-phenylpyridinium (MPP+).


Kv3.4 channel function and dysfunction in nociceptors.

  • David M Ritter‎ et al.
  • Channels (Austin, Tex.)‎
  • 2015‎

Recently, we reported the isolation of the Kv3.4 current in dorsal root ganglion (DRG) neurons and described dysregulation of this current in a spinal cord injury (SCI) model of chronic pain. These studies strongly suggest that rat Kv3.4 channels are major regulators of excitability in DRG neurons from pups and adult females, where they help determine action potential (AP) repolarization and spiking properties. Here, we characterized the Kv3.4 current in rat DRG neurons from adult males and show that it transfers 40-70% of the total repolarizing charge during the AP across all ages and sexes. Following SCI, we also found remodeling of the repolarizing currents during the AP. In the light of these studies, homomeric Kv3.4 channels expressed in DRG nociceptors are emerging novel targets that may help develop new approaches to treat neuropathic pain.


Reduction in expression of the astrocyte glutamate transporter, GLT1, worsens functional and histological outcomes following traumatic spinal cord injury.

  • Angelo C Lepore‎ et al.
  • Glia‎
  • 2011‎

The astrocyte glutamate transporter, GLT1, is responsible for the vast majority of glutamate uptake in the adult central nervous system (CNS), thereby regulating extracellular glutamate homeostasis and preventing excitotoxicity. Glutamate dysregulation plays a central role in outcome following traumatic spinal cord injury (SCI). To determine the role of GLT1 in secondary cell loss following SCI, mice heterozygous for the GLT1 astrocyte glutamate transporter (GLT1+/-) and wild-type mice received thoracic crush SCI. Compared with wild-type controls, GLT1+/- mice had an attenuated recovery in hindlimb motor function, increased lesion size, and decreased tissue sparing. GLT1+/- mice showed a decrease in intraspinal GLT1 protein and functional glutamate uptake compared with wild-type mice, accompanied by increased apoptosis and neuronal loss following crush injury. These results suggest that astrocyte GLT1 plays a role in limiting secondary cell death following SCI, and also show that compromise of key astrocyte functions has significant effects on outcome following traumatic CNS injury. These findings also suggest that increasing intraspinal GLT1 expression may represent a therapeutically relevant target for SCI treatment.


Corticothalamic network dysfunction and behavioral deficits in a mouse model of Alzheimer's disease.

  • Anupam Hazra‎ et al.
  • Neurobiology of aging‎
  • 2016‎

Alzheimer's disease is associated with cognitive decline and seizures. Growing evidence indicates that seizures contribute to cognitive deficits early in disease, but how they develop and impact cognition are unclear. To investigate potential mechanisms, we studied a mouse model that overexpresses mutant human amyloid precursor protein with high levels of amyloid beta (Aβ). These mice develop generalized epileptiform activity, including nonconvulsive seizures, consistent with alterations in corticothalamic network activity. Amyloid precursor protein mice exhibited reduced activity marker expression in the reticular thalamic nucleus, a key inhibitory regulatory nucleus, and increased activity marker expression in downstream thalamic relay targets that project to cortex and limbic structures. Slice recordings revealed impaired cortical inputs to the reticular thalamic nucleus that may contribute to corticothalamic dysfunction. These results are consistent with our findings of impaired sleep maintenance in amyloid precursor protein mice. Finally, the severity of sleep impairments predicted the severity of deficits in Morris water maze, suggesting corticothalamic dysfunction may relate to hippocampal dysfunction, and may be a pathophysiological mechanism underlying multiple behavioral and cognitive alterations in Alzheimer's disease.


Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury.

  • Charles Nicaise‎ et al.
  • Experimental neurology‎
  • 2012‎

Respiratory dysfunction is the leading cause of morbidity and mortality following traumatic spinal cord injury (SCI). Injuries targeting mid-cervical spinal cord regions affect the phrenic motor neuron pool that innervates the diaphragm, the primary respiratory muscle of inspiration. Contusion-type injury in the cervical spinal cord is one of the most common forms of human SCI; however, few studies have evaluated mid-cervical contusion in animal models or characterized consequent histopathological and functional effects of degeneration of phrenic motor neuron-diaphragm circuitry. In an attempt to target the phrenic motor neuron pool, two unilateral contusion injury paradigms were tested, a single injury at level C4 and a double injury both at levels C3 and C4, and animals were followed for up to 6 weeks post-injury. Both unilateral cervical injury paradigms are reproducible with no mortality or need for breathing assistance, and are accompanied by phrenic motor neuron loss, phrenic nerve axon degeneration, diaphragm atrophy, denervation and subsequent partial reinnervation at the diaphragm neuromuscular junction, changes in spontaneous diaphragm EMG recordings, and reduction in phrenic nerve compound muscle action potential amplitude. These findings demonstrate significant and chronically persistent respiratory compromise following mid-cervical SCI due to phrenic motor neuron degeneration. These injury paradigms and accompanying analyses provide important tools both for understanding mechanisms of phrenic motor neuron and diaphragm pathology following SCI and for evaluating therapeutic strategies in clinically relevant cervical SCI models.


Persistent at-level thermal hyperalgesia and tactile allodynia accompany chronic neuronal and astrocyte activation in superficial dorsal horn following mouse cervical contusion spinal cord injury.

  • Jaime L Watson‎ et al.
  • PloS one‎
  • 2014‎

In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: