Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

The effects of timing of prophylaxis, type of anesthesia, and use of mechanical methods on outcome in major orthopedic surgery - subgroup analyses from 17,701 patients in the XAMOS study.

  • Sylvia Haas‎ et al.
  • Vascular health and risk management‎
  • 2016‎

Real-world data on the use of rivaroxaban in the perioperative period in patients undergoing major orthopedic surgery are limited. Subsets of data from the Phase IV, non-interventional XAMOS study were analyzed to explore the potential influence of timing of the first thrombo prophylactic dose, type of anesthesia, and concomitant mechanical prophylaxis on clinical outcomes in patients undergoing major orthopedic surgery in routine clinical practice.


MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development.

  • Kristin M Junge‎ et al.
  • Clinical epigenetics‎
  • 2018‎

Exposure to endocrine-disrupting chemicals can alter normal physiology and increase susceptibility to non-communicable diseases like obesity. Especially the prenatal and early postnatal period is highly vulnerable to adverse effects by environmental exposure, promoting developmental reprogramming by epigenetic alterations. To obtain a deeper insight into the role of prenatal bisphenol A (BPA) exposure in children's overweight development, we combine epidemiological data with experimental models and BPA-dependent DNA methylation changes.


The impact of α-Lipoic acid on cell viability and expression of nephrin and ZNF580 in normal human podocytes.

  • Ulrike Leppert‎ et al.
  • European journal of pharmacology‎
  • 2017‎

Human podocytes (hPC) are essential for maintaining normal kidney function and dysfunction or loss of hPC play a pivotal role in the manifestation and progression of chronic kidney diseases including diabetic nephropathy. Previously, α-Lipoic acid (α-LA), a licensed drug for treatment of diabetic neuropathy, was shown to exhibit protective effects on diabetic nephropathy in vivo. However, the effect of α-LA on hPC under non-diabetic conditions is unknown. Therefore, we analyzed the impact of α-LA on cell viability and expression of nephrin and zinc finger protein 580 (ZNF580) in normal hPC in vitro. Protein analyses were done via Western blot techniques. Cell viability was determined using a functional assay. hPC viability was dynamically modulated via α-LA stimulation in a concentration-dependent manner. This was associated with reduced nephrin and ZNF580 expression and increased nephrin phosphorylation in normal hPC. Moreover, α-LA reduced nephrin and ZNF580 protein expression via 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) inhibition. These data demonstrate that low α-LA had no negative influence on hPC viability, whereas, high α-LA concentrations induced cytotoxic effects on normal hPC and reduced nephrin and ZNF580 expression via NF-κB inhibition. These data provide first novel information about potential cytotoxic effects of α-LA on hPC under non-diabetic conditions.


Off-target effects of siRNA specific for GFP.

  • Cordula Tschuch‎ et al.
  • BMC molecular biology‎
  • 2008‎

Gene knock down by RNAi is a highly effective approach to silence gene expression in experimental as well as therapeutic settings. However, this widely used methodology entails serious pitfalls, especially concerning specificity of the RNAi molecules.


Tumor necrosis factor receptor signaling is a driver of chronic lymphocytic leukemia that can be therapeutically targeted by the flavonoid wogonin.

  • Claudia Dürr‎ et al.
  • Haematologica‎
  • 2018‎

Chronic lymphocytic leukemia is a malignancy of mature B cells that strongly depend on microenvironmental factors, and their deprivation has been identified as a promising treatment approach for this incurable disease. Cytokine array screening of 247 chronic lymphocytic leukemia serum samples revealed elevated levels of tumor necrosis factor (TNF) receptor-1 which were associated with poor clinical outcome. We detected a microenvironment-induced expression of TNF receptor-1 in chronic lymphocytic leukemia cells in vitro, and an aberrantly high expression of this receptor in the proliferation centers of patients' lymph nodes. Stimulation of TNF receptor-1 with TNF-α enhanced nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) activity and viability of chronic lymphocytic leukemia cells, which was inhibited by wogonin. The therapeutic effects of wogonin were analyzed in mice after adoptive transfer of Eμ-T-cell leukemia 1 (TCL1) leukemic cells. Wogonin treatment prevented leukemia development when given early after transplantation. The treatment of full-blown leukemia resulted in the loss of the TNF receptor-1 on chronic lymphocytic leukemia cells and their mobilization to blood. Targeting TNF receptor-1 signaling is therefore proposed for the treatment of chronic lymphocytic leukemia.


Concerted EP2 and EP4 Receptor Signaling Stimulates Autocrine Prostaglandin E2 Activation in Human Podocytes.

  • Eva Mangelsen‎ et al.
  • Cells‎
  • 2020‎

Glomerular hyperfiltration is an important mechanism in the development of albuminuria. During hyperfiltration, podocytes are exposed to increased fluid flow shear stress (FFSS) in Bowman's space. Elevated Prostaglandin E2 (PGE2) synthesis and upregulated cyclooxygenase 2 (Cox2) are associated with podocyte injury by FFSS. We aimed to elucidate a PGE2 autocrine/paracrine pathway in human podocytes (hPC). We developed a modified liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS) protocol to quantify cellular PGE2, 15-keto-PGE2, and 13,14-dihydro-15-keto-PGE2 levels. hPC were treated with PGE2 with or without separate or combined blockade of prostaglandin E receptors (EP), EP2, and EP4. Furthermore, the effect of FFSS on COX2, PTGER2, and PTGER4 expression in hPC was quantified. In hPC, stimulation with PGE2 led to an EP2- and EP4-dependent increase in cyclic adenosine monophosphate (cAMP) and COX2, and induced cellular PGE2. PTGER4 was downregulated after PGE2 stimulation in hPC. In the corresponding LC/ESI-MS/MS in vivo analysis at the tissue level, increased PGE2 and 15-keto-PGE2 levels were observed in isolated glomeruli obtained from a well-established rat model with glomerular hyperfiltration, the Munich Wistar Frömter rat. COX2 and PTGER2 were upregulated by FFSS. Our data thus support an autocrine/paracrine COX2/PGE2 pathway in hPC linked to concerted EP2 and EP4 signaling.


MiRNA-29b and miRNA-497 Modulate the Expression of Carboxypeptidase X Member 2, a Candidate Gene Associated with Left Ventricular Hypertrophy.

  • Jana Subrova‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Left ventricular hypertrophy (LVH) is a major risk factor for adverse cardiovascular events. Recently, a novel candidate gene encoding the carboxypeptidase X member 2 (CPXM2) was found to be associated with hypertension-induced LVH. CPXM2 belongs to the M14 family of metallocarboxypeptidases, yet it lacks detectable enzyme activity, and its function remains unknown. Here, we investigated the impact of micro (mi)RNA-29b, miRNA-195, and miRNA-497 on the posttranscriptional expression control of CPXM2. Candidate miRNAs for CPXM2 expression control were identified in silico. CPXM2 expression in rat cardiomyocytes (H9C2) was characterized via real-time PCR, Western blotting, and immunofluorescence. Direct miRNA/target mRNA interaction was analysed by dual luciferase assay. CPXM2 was expressed in H9C2 and co-localised with z-disc associated protein PDZ and LIM domain 3 (Pdlim3). Transfection of H9C2 with miRNA-29b, miRNA-195, and miRNA-497 led to decreased levels of CPXM2 mRNA and protein, respectively. Results of dual luciferase assays revealed that miRNA-29b and miRNA-497, but not miRNA-195, directly regulated CPXM2 expression on a posttranscriptional level via binding to the 3'UTR of CPXM2 mRNA. We identified two miRNAs capable of the direct posttranscriptional expression control of CPXM2 expression in rat cardiomyocytes. This novel data may help to shed more light on the-so far-widely unexplored expression control of CPXM2 and its potential role in LVH.


Patterns of medication use and the burden of polypharmacy in patients with chronic kidney disease: the German Chronic Kidney Disease study.

  • Insa M Schmidt‎ et al.
  • Clinical kidney journal‎
  • 2019‎

Patients with chronic kidney disease (CKD) bear a substantial burden of comorbidities leading to the prescription of multiple drugs and a risk of polypharmacy. However, data on medication use in this population are scarce.


Genome-Wide Association Study of Metamizole-Induced Agranulocytosis in European Populations.

  • Anca Liliana Cismaru‎ et al.
  • Genes‎
  • 2020‎

Agranulocytosis is a rare yet severe idiosyncratic adverse drug reaction to metamizole, an analgesic widely used in countries such as Switzerland and Germany. Notably, an underlying mechanism has not yet been fully elucidated and no predictive factors are known to identify at-risk patients. With the aim to identify genetic susceptibility variants to metamizole-induced agranulocytosis (MIA) and neutropenia (MIN), we conducted a retrospective multi-center collaboration including cases and controls from three European populations. Association analyses were performed using genome-wide genotyping data from a Swiss cohort (45 cases, 191 controls) followed by replication in two independent European cohorts (41 cases, 273 controls) and a joint discovery meta-analysis. No genome-wide significant associations (p < 1 × 10-7) were observed in the Swiss cohort or in the joint meta-analysis, and no candidate genes suggesting an immune-mediated mechanism were identified. In the joint meta-analysis of MIA cases across all cohorts, two candidate loci on chromosome 9 were identified, rs55898176 (OR = 4.01, 95%CI: 2.41-6.68, p = 1.01 × 10-7) and rs4427239 (OR = 5.47, 95%CI: 2.81-10.65, p = 5.75 × 10-7), of which the latter is located in the SVEP1 gene previously implicated in hematopoiesis. This first genome-wide association study for MIA identified suggestive associations with biological plausibility that may be used as a stepping-stone for post-GWAS analyses to gain further insight into the mechanism underlying MIA.


Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC.

  • Xu Zhou‎ et al.
  • Nature cancer‎
  • 2023‎

Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.


Fetal-adult cardiac transcriptome analysis in rats with contrasting left ventricular mass reveals new candidates for cardiac hypertrophy.

  • Katja Grabowski‎ et al.
  • PloS one‎
  • 2015‎

Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns.


Nephroprotective effects of the endothelin ET(A) receptor antagonist darusentan in salt-sensitive genetic hypertension.

  • Lars Rothermund‎ et al.
  • European journal of pharmacology‎
  • 2003‎

We tested the effect of selective endothelin ET(A) receptor blockade on the development renal damage in the Sabra rat model of genetic salt-sensitivity. Animals from the salt-sensitive (SBH/y) and salt-resistant strains (SBN/y) were either salt-loaded with deoxycorticosterone acetate and salt (DOCA) or fed a normal diet. Additional salt-loaded groups were also treated with the selective ET(A) antagonist darusentan (DA). Salt-loading in SBH/y increased systolic blood pressure by 75 mm Hg and urinary albumin excretion 23-fold (P<0.0001). Darusentan attenuated the rise of systolic blood pressure (50%) and urinary albumin excretion (63%, P<0.01, respectively). Salt-loading in SBH/y was associated with significant increased osteopontin mRNA expression as well as glomerulosclerosis and tubulointerstitial damage in the kidney (P<0.05, respectively). This was either significantly reduced or normalized by darusentan (P<0.05, respectively). Thus, darusentan confers a significant renal protection in the Sabra model of salt-sensitive hypertension.


Reduced food intake and body weight in mice deficient for the G protein-coupled receptor GPR82.

  • Kathrin M Y Engel‎ et al.
  • PloS one‎
  • 2011‎

G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments.


Role of the H1 haplotype of microtubule-associated protein tau (MAPT) gene in Greek patients with Parkinson's disease.

  • Nikolaos Refenes‎ et al.
  • BMC neurology‎
  • 2009‎

The extended tau haplotype (H1) that covers the entire human microtubule-associated protein tau (MAPT) gene has been implicated in Parkinson's disease (PD). Nevertheless, controversial results, such as two studies in Greek populations with opposite effects, have been reported. Therefore, we set out to determine whether the H1 haplotype and additional single nucleotide polymorphisms (SNPs) included in H1 are associated with PD in a sample of Greek patients.


Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice.

  • Mara Sandrock‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2009‎

Obese melanocortin-4-receptor-deficient (MC4R-/-) male mice are reported to have erectile dysfunction, while homozygous MC4R-/- female mice are apparently fertile. A recently established obese mouse strain, carrying an inactivating mutation in the MC4R gene, revealed difficulties in breeding for the homozygous female mice. This prompted us to determine the presence of follicles and corpora lutea (CL) in ovaries of MC4R-/- mice aged 3-6 months in comparison to wild type (MC4R+/+) littermates. Serial sections of formaldehyde-fixed ovaries of mice with vaginal signs of estrus and metestrus were assessed for the number of healthy and regressing follicles and CL. The number of CL, as an estimate for the ovulation rate, decreased to zero during aging in MC4R-/- mice. The number of small- (diameter 100-200 micrometer) and large-sized follicles namely antral follicles (diameter >200 micrometer) were slightly increased in MC4R-/- compared to MC4R+/+ mice. Greater differences were found in very large to cystic follicles, which were more numerous in MC4R-/- mice. The number of regressing antral follicles was higher in the MC4R-/- group compared to the MC4R+/+ group. This was associated with a wide range in the number of collapsed zonae pellucidae as the last remnants of regressed follicles. A conspicuous hypertrophy of the interstitial cells was noted in 6-month-old MC4R-/- mice. In conclusion, cystic follicles and the reduction in CL number point to a decreased ovulation rate in obese MC4R-/- mice.


Mutation update: Review of TPP1 gene variants associated with neuronal ceroid lipofuscinosis CLN2 disease.

  • Emily Gardner‎ et al.
  • Human mutation‎
  • 2019‎

Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is an autosomal recessive condition caused by variants in the TPP1 gene, leading to deficient activity of the lysosomal enzyme tripeptidyl peptidase I (TPP1). We update on the spectrum of TPP1 variants associated with CLN2 disease, comprising 131 unique variants from 389 individuals (717 alleles) collected from the literature review, public databases, and laboratory communications. Previously unrecorded individuals were added to the UCL TPP1-specific database. Two known pathogenic variants, c.509-1 G>C and c.622 C>T (p.(Arg208*)), collectively occur in 60% of affected individuals in the sample, and account for 50% of disease-associated alleles. At least 86 variants (66%) are private to single families. Homozygosity occurs in 45% of individuals where both alleles are known (87% of reported individuals). Atypical CLN2 disease, TPP1 enzyme deficiency with disease onset and/or progression distinct from classic late-infantile CLN2, represents 13% of individuals recorded with associated phenotype. NCBI ClinVar currently holds records for 37% of variants collected here. Effective CLN2 disease management requires early diagnosis; however, irreversible neurodegeneration occurs before a diagnosis is typically reached at age 5. Timely classification and public reporting of TPP1 variants is essential as molecular testing increases in use as a first-line diagnostic test for pediatric-onset neurological disease.


The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1.

  • Tim Ott‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Joubert syndrome (JS) is a congenital autosomal-recessive or-in rare cases-X-linked inherited disease. The diagnostic hallmark of the so-called molar tooth sign describes the morphological manifestation of the mid- and hind-brain in axial brain scans. Affected individuals show delayed development, intellectual disability, ataxia, hyperpnea, sleep apnea, abnormal eye, and tongue movements as well as hypotonia. At the cellular level, JS is associated with the compromised biogenesis of sensory cilia, which identifies JS as a member of the large group of ciliopathies. Here we report on the identification of novel compound heterozygous variants (p.Y503C and p.Q485*) in the centrosomal gene PIBF1 in a patient with JS via trio whole exome sequencing. We have studied the underlying disease mechanism in the frog Xenopus, which offers fast assessment of cilia functions in a number of embryological contexts. Morpholino oligomer (MO) mediated knockdown of the orthologous Xenopus pibf1 gene resulted in defective mucociliary clearance in the larval epidermis, due to reduced cilia numbers and motility on multiciliated cells. To functionally assess patient alleles, mutations were analyzed in the larval skin: the p.Q485* nonsense mutation resulted in a disturbed localization of PIBF1 to the ciliary base. This mutant failed to rescue the ciliation phenotype following knockdown of endogenous pibf1. In contrast, the missense variant p.Y503C resulted in attenuated rescue capacity compared to the wild type allele. Based on these results, we conclude that in the case of this patient, JS is the result of a pathogenic combination of an amorphic and a hypomorphic PIBF1 allele. Our study underscores the versatility of the Xenopus model to study ciliopathies such as JS in a rapid and cost-effective manner, which should render this animal model attractive for future studies of human ciliopathies.


Maternal paraben exposure triggers childhood overweight development.

  • Beate Leppert‎ et al.
  • Nature communications‎
  • 2020‎

Parabens are preservatives widely used in consumer products including cosmetics and food. Whether low-dose paraben exposure may cause adverse health effects has been discussed controversially in recent years. Here we investigate the effect of prenatal paraben exposure on childhood overweight by combining epidemiological data from a mother-child cohort with experimental approaches. Mothers reporting the use of paraben-containing cosmetic products have elevated urinary paraben concentrations. For butyl paraben (BuP) a positive association is observed to overweight within the first eight years of life with a stronger trend in girls. Consistently, maternal BuP exposure of mice induces a higher food intake and weight gain in female offspring. The effect is accompanied by an epigenetic modification in the neuronal Pro-opiomelanocortin (POMC) enhancer 1 leading to a reduced hypothalamic POMC expression. Here we report that maternal paraben exposure may contribute to childhood overweight development by altered POMC-mediated neuronal appetite regulation.


Transmembrane protein 14A protects glomerular filtration barrier integrity.

  • Ramzi Khalil‎ et al.
  • Physiological reports‎
  • 2023‎

Transmembrane protein 14A (TMEM14A) is a relatively unknown protein that is now identified to be required for maintaining the integrity of the glomerular filtration barrier. It is an integral transmembrane protein of 99 amino acids with three transmembrane domains. TMEM14A has been implied to suppress Bax-mediated apoptosis in other studies. Other than that, little is currently known of its function. Here, we show that its expression is diminished before onset of proteinuria in a spontaneously proteinuric rat model. Knocking down tmem14a mRNA translation results in proteinuria in zebrafish embryos without affecting tubular reabsorption. Also, it is primarily expressed by podocytes. Lastly, an increase in glomerular TMEM14A expression is exhibited in various proteinuric renal diseases. Overall, these results suggest that TMEM14A is a novel factor in the protective mechanisms of the nephron to maintain glomerular filtration barrier integrity.


Autophagic vacuolar myopathy is a common feature of CLN3 disease.

  • Josefine Radke‎ et al.
  • Annals of clinical and translational neurology‎
  • 2018‎

The neuronal ceroid lipofuscinoses (NCL) are genetic degenerative disorders of brain and retina. NCL with juvenile onset (JNCL) is genetically heterogeneous but most frequently caused by mutations of CLN3. Classical juvenile CLN3 includes a rare protracted form, which has previously been linked to autophagic vacuolar myopathy (AVM). Our study investigates the association of AVM with classic, non-protracted CLN3.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: