Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat.

  • Wolfram C Poller‎ et al.
  • Brain research‎
  • 2013‎

Homeostasis describes the fundamental biological ability of individuals to maintain stable internal conditions in a changing environment. Homeostatic reactions include internal adjustments as well as behavioral responses. In vertebrates, behavioral responses are induced by the reward system. This system originates in the ventral tegmental area (VTA) and leads to increased dopamine levels in the forebrain whenever activated. A major inhibitor of VTA activity is the lateral habenula (LHb). This epithalamic structure is able to almost completely suppress dopamine release, either directly or via the rostromedial tegmental nucleus (RMTg), when rewarding expectations are not met. A major input to the LHb arises from the lateral hypothalamic area (LHA), an important regulator of the homeostatic system. Currently, little is known about the effects of the strong hypothalamic projection on the activity of LHb neurons. In the present study, we analyze neurotransmitters and cellular targets of the LHA-LHb projection in the rat. Therefore, anterograde tracing from the LHA was combined with the visualization of neurotransmitters in the LHb. These experiments revealed a mainly glutamatergic projection, probably exerting excitatory effects on the targeted LHb cells. These cellular targets were analyzed in a second step. Anterograde tracing from the LHA in combination with retrograde tracing from the VTA/RMTg region revealed that LHb neurons projecting to the VTA/RMTg region are densely targeted by the LHA projection. Visualization of synaptophysin at these contact sites indicates that the contact sites indeed are synapses. Taken together, the present study describes a strong mainly glutamatergic projection from the LHA that targets VTA/RMTg-projecting neurons in the LHb. These findings emphasize the potential role of the LHb as direct link between homeostatic areas and reward circuitries, which may be important for the control of homeostatic behaviors.


Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE.

  • Christian Derst‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

TipE is an auxiliary subunit of the Drosophila Para sodium channel. Here we describe four sequences, TEH1-4, homologous to TipE in the Drosophila melanogaster genome, harboring all typical structures of both TipE and the beta-Subunit family of big-conductance Ca(2+)-activated potassium channels: short cytosolic N- and C-terminal stretches, two transmembrane domains, and a large extracellular loop with two disulfide bonds. Whereas TEH1 and TEH2 lack the TipE-specific extension in the extracellular loop, both TEH3 and TEH4 possess two extracellular EGF-like domains. A CNS-specific expression was found for TEH1, while TEH2-4 were more widely expressed. The genes for TEH2-4 are localized close to the tipE gene on chromosome 3L. Coexpression of TEH subunits with Para in Xenopus oocytes showed a strong (30-fold, TEH1), medium (5- to 10-fold, TEH2 and TEH3), or no (TEH4) increase in sodium current amplitude, while TipE increased the current 20-fold. In addition, steady-state inactivation and the recovery from fast inactivation were altered by coexpression of Para with TEH1. We conclude that members of the TEH-family are auxiliary subunits for Para sodium channels and possibly other ion channels.


nanite: using machine learning to assess the quality of atomic force microscopy-enabled nano-indentation data.

  • Paul Müller‎ et al.
  • BMC bioinformatics‎
  • 2019‎

Atomic force microscopy (AFM) allows the mechanical characterization of single cells and live tissue by quantifying force-distance (FD) data in nano-indentation experiments. One of the main problems when dealing with biological tissue is the fact that the measured FD curves can be disturbed. These disturbances are caused, for instance, by passive cell movement, adhesive forces between the AFM probe and the cell, or insufficient attachment of the tissue to the supporting cover slide. In practice, the resulting artifacts are easily spotted by an experimenter who then manually sorts out curves before proceeding with data evaluation. However, this manual sorting step becomes increasingly cumbersome for studies that involve numerous measurements or for quantitative imaging based on FD maps.


Early evolution of radial glial cells in Bilateria.

  • Conrad Helm‎ et al.
  • Proceedings. Biological sciences‎
  • 2017‎

Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system-composed of sensory cells, neurons and radial glial cells-was probably the plesiomorphic condition in the bilaterian ancestor.


The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium.

  • Jan Benedikt‎ et al.
  • Biomolecules‎
  • 2022‎

The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure, and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs, (ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs for negatively charged molecules through glial syncytium.


A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy.

  • Matthias Christoph Munder‎ et al.
  • eLife‎
  • 2016‎

Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.


Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse.

  • Anuradha Dhingra‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Retinal ON bipolar cells make up about 70% of all bipolar cells. Glutamate hyperpolarizes these cells by binding to the metabotropic glutamate receptor mGluR6, activating the G-protein G(o1), and closing an unidentified cation channel. To facilitate investigation of ON bipolar cells, we here report on the production of a transgenic mouse (Grm6-GFP) in which enhanced green fluorescent protein (EGFP), under control of mGluR6 promoter, was expressed in all and only ON bipolar cells. We used the mouse to determine density of ON bipolar cells, which in central retina was 29,600 cells/mm(2). We further sorted the fluorescent cells and created a pure ON bipolar cDNA library that was negative for photoreceptor unique genes. With this library, we determined expression of 27 genes of interest. We obtained positive transcripts for G(o) interactors: regulators of G-protein signaling (RGS), Ret-RGS1 (a variant of RGS20), RGS16, RGS7, purkinje cell protein 2 (PCP2, also called L7 or GPSM4), synembryn (RIC-8), LGN (GPSM2), RAP1GAP, and Gbeta5; cGMP modulators: guanylyl cyclase (GC) 1alpha1, GC1beta1, phosphodiesterase (PDE) 1C, and PDE9A; and channels: inwardly rectifying potassium channel Kir2.4, transient receptor potential TRPC2, and sperm-specific cation channels CatSper 2-4. The following transcripts were not found in our library: AGS3 (GPSM1), RGS10, RGS19 (GAIP), calbindin, GC1alpha2, GC1beta2, PDE5, PDE2A, amiloride-sensitive sodium channel ACCN4, and CatSper1. We then localized Kir2.4 to several cell types and showed that, in ON bipolar cells, the channel concentrates in their dendritic tips. The channels and modulators found in ON bipolar cells likely shape their light response. Additional uses of the Grm6-GFP mouse are also discussed.


Detailed morphological analysis of rat hippocampi treated with CSF autoantibodies from patients with anti-NMDAR encephalitis discloses two distinct types of immunostaining patterns.

  • Franziska Wagner‎ et al.
  • Brain research‎
  • 2020‎

Anti-NMDA receptor encephalitis was first described about thirteen years ago and has become one of the most important differential diagnoses for new-onset psychosis. The disease is mediated by autoantibodies against the subunit 1 of the N-methyl-D-aspartate receptor (NMDA-R1) in patients presenting with variable clinical symptoms. Patients often profit from immunmodulatory therapy, independent of their individual symptoms. In this study CSF samples as well as monoclonal antibodies derived from patients diagnosed with NMDA-R1 encephalitis were applied to rat hippocampus and visualized by immunocytochemistry. This reveals at least two distinct patterns of immunoreactivity. Antibodies from "pattern group 1" display the familiar pattern of NMDA-R1 distribution in the hippocampus reported in experiments with rabbit anti-NMDA-R1 antibodies. Neurons and primary dendrites in the CA1 and CA3 region show strongly stained cell bodies, in line with the predominant postsynaptic localization of the NMDA receptor in the brain. However, autoantibodies from "pattern group 2" show an inverse pattern, with no staining of the cell bodies and primary dendrites in CA1 and CA3 regions. Electron microscopic experiments disclose that autoantibodies of "pattern group 1 patients" bind to postsynaptic NMDA receptors, while those of "pattern group 2 patients" target presynaptic NMDA receptors. We describe one NMDA-receptor antibody giving staining comparable to rabbit anti-NMDA-R1 antibodies, raised against the C-terminus. In the highly heterogenous disease anti-NMDA-receptor 1 encephalitis we found evidence for at least two different subtypes. It will be very interesting to determine whether there also are two distinct clinical phenotypes.


A novel giant non-cholinergic striatal interneuron restricted to the ventrolateral striatum coexpresses Kv3.3 potassium channel, parvalbumin, and the vesicular GABA transporter.

  • Lydia Lebenheim‎ et al.
  • Molecular psychiatry‎
  • 2022‎

The striatum is the main input structure of the basal ganglia. Distinct striatal subfields are involved in voluntary movement generation and cognitive and emotional tasks, but little is known about the morphological and molecular differences of striatal subregions. The ventrolateral subfield of the striatum (VLS) is the orofacial projection field of the sensorimotor cortex and is involved in the development of orofacial dyskinesias, involuntary chewing-like movements that often accompany long-term neuroleptic treatment. The biological basis for this particular vulnerability of the VLS is not known. Potassium channels are known to be strategically localized within the striatum. In search of possible molecular correlates of the specific vulnerability of the VLS, we analyzed the expression of voltage-gated potassium channels in rodent and primate brains using qPCR, in situ hybridization, and immunocytochemical single and double staining. Here we describe a novel, giant, non-cholinergic interneuron within the VLS. This neuron coexpresses the vesicular GABA transporter, the calcium-binding protein parvalbumin (PV), and the Kv3.3 potassium channel subunit. This novel neuron is much larger than PV neurons in other striatal regions, displays characteristic electrophysiological properties, and, most importantly, is restricted to the VLS. Consequently, the giant striatal Kv3.3-expressing PV neuron may link compromised Kv3 channel function and VLS-based orofacial dyskinesias.


Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy.

  • Christina C Young‎ et al.
  • The Journal of physiology‎
  • 2009‎

In humans, temporal lobe epilepsy (TLE) is often associated with Ammon's horn sclerosis (AHS) characterized by hippocampal cell death, gliosis and granule cell dispersion (GCD) in the dentate gyrus. Granule cells surviving TLE have been proposed to be hyperexcitable and to play an important role in seizure generation. However, it is unclear whether this applies to conditions of AHS. We studied granule cells using the intrahippocampal kainate injection mouse model of TLE, brain slice patch-clamp recordings, morphological reconstructions and immunocytochemistry. With progressing AHS and GCD, 'epileptic' granule cells of the injected hippocampus displayed a decreased input resistance, a decreased membrane time constant and an increased rheobase. The resting leak conductance was doubled in epileptic granule cells and roughly 70-80% of this difference were sensitive to K(+) replacement. Of the increased K(+) leak, about 50% were sensitive to 1 mm Ba(2+). Approximately 20-30% of the pathological leak was mediated by a bicuculline-sensitive GABA(A) conductance. Epileptic granule cells had strongly enlarged inwardly rectifying currents with a low micromolar Ba(2+) IC(50), reminiscent of classic inward rectifier K(+) channels (Irk/Kir2). Indeed, protein expression of Kir2 subunits (Kir2.1, Kir2.2, Kir2.3, Kir2.4) was upregulated in epileptic granule cells. Immunolabelling for two-pore weak inward rectifier K(+) channels (Twik1/K2P1.1, Twik2/K2P6.1) was also increased. We conclude that the excitability of granule cells in the sclerotic focus of TLE is reduced due to an increased resting conductance mainly due to upregulated K(+) channel expression. These results point to a local adaptive mechanism that could counterbalance hyperexcitability in epilepsy.


Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats.

  • Katja Krügel‎ et al.
  • Experimental eye research‎
  • 2011‎

Osmotic swelling of retinal glial (Müller) cells may contribute to the development of edema in diabetic retinopathy. Here, we tested whether oxidative stress and mitochondrial dysfunction are pathogenic factors involved in the osmotic swelling of Müller cells in retinal slices from control and streptozotocin-injected hyperglycemic rats. Hypotonic challenge did not change the size of Müller cell somata from control animals but induced soma swelling in Müller cells of diabetic animals. Administration of a reducing agent blocked the osmotic swelling of Müller cell somata. In retinal tissues from control animals, administration of the reducing agent blocked also the swelling-inducing effects of antagonists of P2Y₁ and adenosine A₁ receptors. In tissues from diabetic animals, inhibition of xanthine oxidase decreased the soma swelling by approximately 50% while inhibition of NADPH oxidase and nitric oxide synthase had no effects. Blockade of mitochondrial oxidative stress by perindopril, as well as of mitochondrial permeability transition by cyclosporin A or minocycline, attenuated the swelling. In addition, activation of mitochondrial K(ATP) channels by pinacidil fully prevented the swelling. The data suggest that oxidative stress produced by xanthine oxidase, as well as the mitochondria, are implicated in the induction of osmotic swelling of Müller cells from diabetic rats.


Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei.

  • René Bernard‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

The lateral habenular complex (LHb) is a bilateral epithalamic brain structure involved in the modulation of ascending monoamine systems in response to afferents from limbic regions and basal ganglia. The LHb is implicated in various biological functions, such as reward, sleep-wake cycle, feeding, pain processing, and memory formation. The modulatory role of the LHb is partially assumed by putative spontaneously active LHb neurons projecting to the dopaminergic ventral tegmental area (VTA) and to the serotonergic median (MnR) and dorsal raphe nuclei (DR). All four nuclei form a complex and coordinated network to evoke appropriate responses to reward-related stimuli. At present it is not known whether individual LHb neurons project to only one or to more than one monoaminergic nucleus. To answer this question, we made dual injections of two different retrograde tracers into the rat VTA and either DR or MnR. Tracers were visualized by immunohistochemistry. In coronal sections, the different retrogradly labeled habenular neurons were quantified and assigned to the corresponding habenular subnuclei. Our results show that 1) the distribution of neurons in the LHb projecting to the three monoamine nuclei is similar and exhibits a great overlap, 2) the vast majority of LHb projection neurons target one monoaminergic nucleus only, and 3) very few, heterogeneously distributed LHb neurons project to both dopaminergic and serotonergic nuclei. These results imply that the LHb forms both separate and interconnected circuits with each monoaminergic nucleus, permitting the LHb to modulate its output to different monoamine systems either independently or jointly.


The human Müller cell line MIO-M1 expresses opsins.

  • Margrit Hollborn‎ et al.
  • Molecular vision‎
  • 2011‎

To determine whether the human Müller cell line Moorfields/Institute of Ophthalmology-Müller 1 (MIO-M1) expresses opsins.


Microglia mechanics: immune activation alters traction forces and durotaxis.

  • Lars Bollmann‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2015‎

Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.


Agmatine modulates spontaneous activity in neurons of the rat medial habenular complex-a relevant mechanism in the pathophysiology and treatment of depression?

  • Torsten Weiss‎ et al.
  • Translational psychiatry‎
  • 2018‎

The dorsal diencephalic conduction system connects limbic forebrain structures to monaminergic mesencephalic nuclei via a distinct relay station, the habenular complexes. Both habenular nuclei, the lateral as well as the medial nucleus, are considered to play a prominent role in mental disorders like major depression. Herein, we investigate the effect of the polyamine agmatine on the electrical activity of neurons within the medial habenula in rat. We present evidence that agmatine strongly decreases spontaneous action potential firing of medial habenular neurons by activating I1-type imidazoline receptors. Additionally, we compare the expression patterns of agmatinase, an enzyme capable of inactivating agmatine, in rat and human habenula. In the medial habenula of both species, agmatinase is similarly distributed and observed in neurons and, in particular, in distinct neuropil areas. The putative relevance of these findings in the context of depression is discussed. It is concluded that increased activity of the agmatinergic system in the medial habenula may strengthen midbrain dopaminergic activity. Consequently, the habenular-interpeduncular axis may be dysregulated in patients with major depression.


Uptake of Biotinylated Spermine in Astrocytes: Effect of Cx43 siRNA, HIV-Tat Protein and Polyamine Transport Inhibitor on Polyamine Uptake.

  • Christian J Malpica-Nieves‎ et al.
  • Biomolecules‎
  • 2021‎

Polyamines (PAs) are polycationic biomolecules containing multiple amino groups. Patients with HIV-associated neurocognitive disorder (HAND) have high concentrations of the polyamine N-acetylated spermine in their brain and cerebral spinal fluid (CSF) and have increased PA release from astrocytes. These effects are due to the exposure to HIV-Tat. In healthy adult brain, PAs are accumulated but not synthesized in astrocytes, suggesting that PAs must enter astrocytes to be N-acetylated and released. Therefore, we tested if Cx43 hemichannels (Cx43-HCs) are pathways for PA flux in control and HIV-Tat-treated astrocytes. We used biotinylated spermine (b-SPM) to examine polyamine uptake. We found that control astrocytes and those treated with siRNA-Cx43 took up b-SPM, similarly suggesting that PA uptake is via a transporter/channel other than Cx43-HCs. Surprisingly, astrocytes pretreated with both HIV-Tat and siRNA-Cx43 showed increased accumulation of b-SPM. Using a novel polyamine transport inhibitor (PTI), trimer 44NMe, we blocked b-SPM uptake, showing that PA uptake is via a PTI-sensitive transport mechanism such as organic cation transporter. Our data suggest that Cx43 HCs are not a major pathway for b-SPM uptake in the condition of normal extracellular calcium concentration but may be involved in the release of PAs to the extracellular space during viral infection.


Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina.

  • Astrid Zayas-Santiago‎ et al.
  • PloS one‎
  • 2014‎

Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown.


Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.

  • Alexander Mietke‎ et al.
  • Biophysical journal‎
  • 2015‎

Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible.


Fañanas cells-the forgotten cerebellar glia cell type: Immunocytochemistry reveals two potassium channel-related polypeptides, Kv2.2 and Calsenilin (KChIP3) as potential marker proteins.

  • Angelika Goertzen‎ et al.
  • Glia‎
  • 2018‎

For long times astrocytes had been regarded as supporting cells, passively filling the spaces between neuronal cell bodies and their extensions. Now it is known that astrocytes are actively involved in a variety of important biological functions such as regulating cerebral blood flow, supporting neuronal metabolism, controlling the extracellular potassium concentration, and clearing neurotransmitters from the extracellular space. In line with this multitude of tasks astrocytes display conspicuous functional and regional heterogeneity. Using three complementary labeling methods nine classes of astrocytes have been differentiated, which were termed protoplasmic, fibrous, velate, radial, and perivascular astrocytes in addition to Bergmann, marginal, and ependymal glial cells. To complete this list retinal Müller cells and a largely forgotten astrocytic cell type, the "feathered cell" of Fañanas need to be added. So far, Fañanas cells could be only recognized with the tedious gold-sublimate procedure. Consequently, data indicating a potential biological function are completely missing. In a parallel investigation we used a battery of antibodies against potassium channels and related proteins to identify potential marker proteins for the immunocytochemical visualization of distinct cell types in the cerebellar cortex. Here we present novel marker proteins, the Kv2.2 potassium channel and calsenilin, to visualize Fañanas cells in the cerebellar Purkinje cell layer. Such markers will allow to identify Fañanas cell subsequent to patching and electrophysiological characterization. This may pave the path to obtain new functional data, which may be helpful to understand the role of these enigmatic cells in normal biological function and disease.


Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain?

  • Daniela Peters‎ et al.
  • PloS one‎
  • 2013‎

Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the "classical" pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: