Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 108 papers

Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism.

  • Melissa M Page‎ et al.
  • Free radical biology & medicine‎
  • 2009‎

Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O(2); the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O(2), was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts.


Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.

  • David E Harrison‎ et al.
  • Nature‎
  • 2009‎

Inhibition of the TOR signalling pathway by genetic or pharmacological intervention extends lifespan in invertebrates, including yeast, nematodes and fruitflies; however, whether inhibition of mTOR signalling can extend lifespan in a mammalian species was unknown. Here we report that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age. On the basis of age at 90% mortality, rapamycin led to an increase of 14% for females and 9% for males. The effect was seen at three independent test sites in genetically heterogeneous mice, chosen to avoid genotype-specific effects on disease susceptibility. Disease patterns of rapamycin-treated mice did not differ from those of control mice. In a separate study, rapamycin fed to mice beginning at 270 days of age also increased survival in both males and females, based on an interim analysis conducted near the median survival point. Rapamycin may extend lifespan by postponing death from cancer, by retarding mechanisms of ageing, or both. To our knowledge, these are the first results to demonstrate a role for mTOR signalling in the regulation of mammalian lifespan, as well as pharmacological extension of lifespan in both genders. These findings have implications for further development of interventions targeting mTOR for the treatment and prevention of age-related diseases.


Reduced expression of MYC increases longevity and enhances healthspan.

  • Jeffrey W Hofmann‎ et al.
  • Cell‎
  • 2015‎

MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.


Changes of Ovarian microRNA Profile in Long-Living Ames Dwarf Mice during Aging.

  • Augusto Schneider‎ et al.
  • PloS one‎
  • 2017‎

The Ames dwarf (df/df) mice have extended longevity and can preserve the ovarian reserve longer than Normal (N) mice. Based on this, the aim of our study was to evaluate the ovarian microRNA (miRNA) profile in young and aged df/df and N mice. Ovarian tissue was collected at 5-6 months and at 21-22 months of age for miRNA sequencing. We detected a total of 404 miRNAs in the ovarian samples, from which the abundance of 22 and 33 miRNAs changed with age in N and df/df mice, respectively. Of these, only three miRNAs were commonly regulated with age between N and df/df mice, indicating a very divergent miRNA profile between genotypes. We also detected that 46 miRNAs were regulated between N and df/df mice, of which 23 were regulated exclusively in young mice, 12 exclusively in old mice and 12 commonly regulated at young and old ages. Many genes likely to be targeted by these miRNAs are involved in the FoxO, mTOR, PI3k/Akt and insulin signaling pathways. These results suggest that the aging process has a differential impact on the ovarian miRNA profile in df/df mice, and suggest that these miRNAs can be central players in the maintenance of a younger ovarian phenotype.


Overactive mTOR signaling leads to endometrial hyperplasia in aged women and mice.

  • Preety Bajwa‎ et al.
  • Oncotarget‎
  • 2017‎

During aging, uncontrolled epithelial cell proliferation in the uterus results in endometrial hyperplasia and/or cancer development. The mTOR signaling pathway is one of the major regulators of aging as suppression of this pathway prolongs lifespan in model organisms. Genetic alterations in this pathway via mutations and/or amplifications are often encountered in endometrial cancers. However, the exact contribution of mTOR signaling and uterine aging to endometrial pathologies is currently unclear. This study examined the role of mTOR signaling in uterine aging and its implications in the development of endometrial hyperplasia. The hyperplastic endometrium of both postmenopausal women and aged mice exhibited elevated mTOR activity as seen with increased expression of the pS6 protein. Analysis of uteri from Pten heterozygous and Pten overexpressing mice further confirmed that over-activation of mTOR signaling leads to endometrial hyperplasia. Pharmacological inhibition of mTOR signaling using rapamycin treatment suppressed endometrial hyperplasia in aged mice. Furthermore, treatment with mTOR inhibitors reduced colony size and proliferation of a PTEN negative endometrial cancer cell line in 3D culture. Collectively, this study suggests that hyperactivation of the mTOR pathway is involved in the development of endometrial hyperplasia in aged women and mice.


Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes.

  • María Eugenia Matzkin‎ et al.
  • Aging‎
  • 2016‎

Aged testes undergo profound histological and morphological alterations leading to a reduced functionality. Here, we investigated whether variations in longevity affect the development of local inflammatory processes, the oxidative state and the occurrence of apoptotic events in the testis. To this aim, well-established mouse models with delayed (growth hormone releasing hormone-knockout and Ames dwarf mice) or accelerated (growth hormone-transgenic mice) aging were used. We hereby show that the testes of short-lived mice show a significant increase in cyclooxygenase 2 expression, PGD2 production, lipid peroxidation, antioxidant enzymes expression, local macrophages and TUNEL-positive germ cells numbers, and the levels of both pro-caspase-3 and cleaved caspase-3. In contrast, although the expression of antioxidant enzymes remained unchanged in testes of long-lived mice, the remainder of the parameters assessed showed a significant reduction. This study provides novel evidence that longevity confers anti-inflammatory, anti-oxidant and anti-apoptotic capacities to the adult testis. Oppositely, short-lived mice suffer testicular inflammatory, oxidative and apoptotic processes.


Syntaxin 4 Overexpression Ameliorates Effects of Aging and High-Fat Diet on Glucose Control and Extends Lifespan.

  • Eunjin Oh‎ et al.
  • Cell metabolism‎
  • 2015‎

Indirect evidence suggests that improved insulin sensitivity may contribute to improved lifespan of mice in which aging has been slowed by mutations, drugs, or dietary means, even in stocks of mice that do not show signs of late-life diabetes. Peripheral responses to insulin can be augmented by overexpression of Syntaxin 4 (Syn4), a plasma-membrane-localized SNARE protein. We show here that Syn4 transgenic (Tg) mice with high level expression of Syn4 had a significant extension of lifespan (33% increase in median) and showed increased peripheral insulin sensitivity, even at ages where controls exhibited age-related insulin resistance. Moreover, skeletal muscle GLUT4 and islet insulin granule exocytosis processes were fully protected in Syn4 Tg mice challenged with a high-fat diet. Hence, high-level expressing Syn4 Tg mice may exert better glycemic control, which slows multiple aspects of aging and extends lifespan, even in non-diabetic mice.


Testosterone plus low-intensity physical training in late life improves functional performance, skeletal muscle mitochondrial biogenesis, and mitochondrial quality control in male mice.

  • Wen Guo‎ et al.
  • PloS one‎
  • 2012‎

Testosterone supplementation increases muscle mass in older men but has not been shown to consistently improve physical function and activity. It has been hypothesized that physical exercise is required to induce the adaptations necessary for translation of testosterone-induced muscle mass gain into functional improvements. However, the effects of testosterone plus low intensity physical exercise training (T/PT) on functional performance and bioenergetics are unknown. In this pilot study, we tested the hypothesis that combined administration of T/PT would improve functional performance and bioenergetics in male mice late in life more than low-intensity physical training alone. 28-month old male mice were randomized to receive T/PT or vehicle plus physical training (V/PT) for 2 months. Compare to V/PT control, administration of T/PT was associated with improvements in muscle mass, grip strength, spontaneous physical movements, and respiratory activity. These changes were correlated with increased mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. Mice receiving T/PT also displayed increased expression of key elements for mitochondrial quality control, including markers for mitochondrial fission-and-fusion and mitophagy. Concurrently, mice receiving T/PT also displayed increased expression of markers for reduced tissue oxidative damage and improved muscle quality.


Growth hormone modulation of EGF-induced PI3K-Akt pathway in mice liver.

  • Ma Eugenia Díaz‎ et al.
  • Cellular signalling‎
  • 2012‎

The epidermal growth factor (EGF) activates the phosphatidylinositol 3-kinase (PI3K)-Akt cascade among other signaling pathways. This route is involved in cell proliferation and survival, therefore, its dysregulation can promote cancer. Considering the relevance of the PI3K-Akt signaling in cell survival and in the pathogenesis of cancer, and that GH was reported to modulate EGFR expression and signaling, the objective of this study was to analyze the effects of increased GH levels on EGF-induced PI3K-Akt signaling. EGF-induced signaling was evaluated in the liver of GH-overexpressing transgenic mice and in their normal siblings. While Akt expression was increased in GH-overexpressing mice, EGF-induced phosphorylation of Akt, relative to its protein content, was diminished at Ser473 and inhibited at Thr308; consequently, mTOR, which is a substrate of Akt, was not activated by EGF. However, the activation of PDK1, a kinase involved in Akt phosphorylation at Thr308, was not reduced in transgenic mice. Kinetics studies of EGF-induced Akt phosphorylation showed that it is rapidly and transiently induced in GH-overexpressing mice compared with normal siblings. Thus, the expression and activity of phosphatases involved in the termination of the PI3K-Akt signaling were studied. In transgenic mice, neither PTEN nor PP2A were hyperactivated; however, EGF induced the rapid and transient association of SHP-2 to Gab1, which mediates association to EGFR and activation of PI3K. Rapid recruitment of SHP2, which would accelerate the termination of the proliferative signal induced, could be therefore contributing to the diminished EGF-induced activity of Akt in GH-overexpressing mice.


Synthesis and biologic properties of hydrophilic sapphyrins, a new class of tumor-selective inhibitors of gene expression.

  • Zhong Wang‎ et al.
  • Molecular cancer‎
  • 2007‎

Sapphyrin analogues and related porphyrin-like species have attracted attention as anticancer agents due to their selective localization in various cancers, including hematologic malignancies, relative to surrounding tissues. Sapphyrins are electron affinic compounds that generate high yields of singlet oxygen formation. Although initially explored in the context of photodynamic therapy, sapphyrins have intrinsic anticancer activity that is independent of their photosensitizing properties. However, the mechanisms for their anticancer activity have not been fully elucidated.


Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production.

  • Christopher Hine‎ et al.
  • Cell metabolism‎
  • 2017‎

Decreased growth hormone (GH) and thyroid hormone (TH) signaling are associated with longevity and metabolic fitness. The mechanisms underlying these benefits are poorly understood, but may overlap with those of dietary restriction (DR), which imparts similar benefits. Recently we discovered that hydrogen sulfide (H2S) is increased upon DR and plays an essential role in mediating DR benefits across evolutionary boundaries. Here we found increased hepatic H2S production in long-lived mouse strains of reduced GH and/or TH action, and in a cell-autonomous manner upon serum withdrawal in vitro. Negative regulation of hepatic H2S production by GH and TH was additive and occurred via distinct mechanisms, namely direct transcriptional repression of the H2S-producing enzyme cystathionine γ-lyase (CGL) by TH, and substrate-level control of H2S production by GH. Mice lacking CGL failed to downregulate systemic T4 metabolism and circulating IGF-1, revealing an essential role for H2S in the regulation of key longevity-associated hormones.


Inhibition of class I PI3K enhances chaperone-mediated autophagy.

  • S Joseph Endicott‎ et al.
  • The Journal of cell biology‎
  • 2020‎

Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia, neurodegeneration, hepatosteatosis, and other pathologies relevant to human health and aging. At the lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in CMA is unclear. Here, we report that inhibition of class I PI3K or PDPK1 activates CMA. In contrast, selective inhibition of class III PI3Ks does not activate CMA. Isolated liver lysosomes from mice treated with either of two orally bioavailable class I PI3K inhibitors, pictilisib or buparlisib, display elevated CMA activity, and decreased phosphorylation of lysosomal GFAP, with no change in macroautophagy. The findings of this study represent an important first step in repurposing class I PI3K inhibitors to modulate CMA in vivo.


signatureSearch: environment for gene expression signature searching and functional interpretation.

  • Yuzhu Duan‎ et al.
  • Nucleic acids research‎
  • 2020‎

signatureSearch is an R/Bioconductor package that integrates a suite of existing and novel algorithms into an analysis environment for gene expression signature (GES) searching combined with functional enrichment analysis (FEA) and visualization methods to facilitate the interpretation of the search results. In a typical GES search (GESS), a query GES is searched against a database of GESs obtained from large numbers of measurements, such as different genetic backgrounds, disease states and drug perturbations. Database matches sharing correlated signatures with the query indicate related cellular responses frequently governed by connected mechanisms, such as drugs mimicking the expression responses of a disease. To identify which processes are predominantly modulated in the GESS results, we developed specialized FEA methods combined with drug-target network visualization tools. The provided analysis tools are useful for studying the effects of genetic, chemical and environmental perturbations on biological systems, as well as searching single cell GES databases to identify novel network connections or cell types. The signatureSearch software is unique in that it provides access to an integrated environment for GESS/FEA routines that includes several novel search and enrichment methods, efficient data structures, and access to pre-built GES databases, and allowing users to work with custom databases.


Gene-by-environment modulation of lifespan and weight gain in the murine BXD family.

  • Suheeta Roy‎ et al.
  • Nature metabolism‎
  • 2021‎

How lifespan and body weight vary as a function of diet and genetic differences is not well understood. Here we quantify the impact of differences in diet on lifespan in a genetically diverse family of female mice, split into matched isogenic cohorts fed a low-fat chow diet (CD, n = 663) or a high-fat diet (HFD, n = 685). We further generate key metabolic data in a parallel cohort euthanized at four time points. HFD feeding shortens lifespan by 12%: equivalent to a decade in humans. Initial body weight and early weight gains account for longevity differences of roughly 4-6 days per gram. At 500 days, animals on a HFD typically gain four times as much weight as control, but variation in weight gain does not correlate with lifespan. Classic serum metabolites, often regarded as health biomarkers, are not necessarily strong predictors of longevity. Our data indicate that responses to a HFD are substantially modulated by gene-by-environment interactions, highlighting the importance of genetic variation in making accurate individualized dietary recommendations.


Induction of somatopause in adult mice compromises bone morphology and exacerbates bone loss during aging.

  • Manisha Dixit‎ et al.
  • Aging cell‎
  • 2021‎

Somatopause refers to the gradual declines in growth hormone (GH) and insulin-like growth factor-1 throughout aging. To define how induced somatopause affects skeletal integrity, we used an inducible GH receptor knockout (iGHRKO) mouse model. Somatopause, induced globally at 6 months of age, resulted in significantly more slender bones in both male and female iGHRKO mice. In males, induced somatopause was associated with progressive expansion of the marrow cavity leading to significant thinning of the cortices, which compromised bone strength. We report progressive declines in osteocyte lacunar number, and increases in lacunar volume, in iGHRKO males, and reductions in lacunar number accompanied by ~20% loss of overall canalicular connectivity in iGHRKO females by 30 months of age. Induced somatopause did not affect mineral/matrix ratio assessed by Raman microspectroscopy. We found significant increases in bone marrow adiposity and high levels of sclerostin, a negative regulator of bone formation in iGHRKO mice. Surprisingly, however, despite compromised bone morphology, osteocyte senescence was reduced in the iGHRKO mice. In this study, we avoided the confounded effects of constitutive deficiency in the GH/IGF-1 axis on the skeleton during growth, and specifically dissected its effects on the aging skeleton. We show here, for the first time, that induced somatopause compromises bone morphology and the bone marrow environment.


Anti-CD73 antibody activates human B cells, enhances humoral responses and induces redistribution of B cells in patients with cancer.

  • Richard A Miller‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

CD73 is widely expressed on immune cells playing a critical role in immunomodulatory functions including cell adhesion and migration, as a costimulatory molecule for T cells and in production of adenosine. The function of CD73 expressed on B cells has not been fully characterized. Mupadolimab is an anti-human CD73 antibody that activates B cells. We evaluated the characteristics of this antibody and its effects on immune cells in vitro and in vivo.


FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice.

  • Cristal M Hill‎ et al.
  • Nature communications‎
  • 2022‎

Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice. Conversely, mice lacking FGF21 fail to exhibit metabolic responses to protein restriction in early life, and in later life exhibit early onset of age-related weight loss, reduced physical performance, increased frailty, and reduced lifespan. These data demonstrate that protein restriction in aging male mice exerts marked beneficial effects on lifespan and metabolic health and that a single metabolic hormone, FGF21, is essential for the anti-aging effect of this dietary intervention.


Lifespan extension in female mice by early, transient exposure to adult female olfactory cues.

  • Michael Garratt‎ et al.
  • eLife‎
  • 2022‎

Several previous lines of research have suggested, indirectly, that mouse lifespan is particularly susceptible to endocrine or nutritional signals in the first few weeks of life, as tested by manipulations of litter size, growth hormone levels, or mutations with effects specifically on early-life growth rate. The pace of early development in mice can also be influenced by exposure of nursing and weanling mice to olfactory cues. In particular, odors of same-sex adult mice can in some circumstances delay maturation. We hypothesized that olfactory information might also have a sex-specific effect on lifespan, and we show here that the lifespan of female mice can be increased significantly by odors from adult females administered transiently, that is from 3 days until 60 days of age. Female lifespan was not modified by male odors, nor was male lifespan susceptible to odors from adults of either sex. Conditional deletion of the G protein Gαo in the olfactory system, which leads to impaired accessory olfactory system function and blunted reproductive priming responses to male odors in females, did not modify the effect of female odors on female lifespan. Our data provide support for the idea that very young mice are susceptible to influences that can have long-lasting effects on health maintenance in later life, and provide a potential example of lifespan extension by olfactory cues in mice.


Prodromal Glutamatergic Modulation with Riluzole Impacts Glucose Homeostasis and Spatial Cognition in Alzheimer's Disease Mice.

  • Caleigh A Findley‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2023‎

Prior research supports a strong link between Alzheimer's disease (AD) and metabolic dysfunction that involves a multi-directional interaction between glucose, glutamatergic homeostasis, and amyloid pathology. Elevated soluble amyloid-β (Aβ) is an early biomarker for AD-associated cognitive decline that contributes to concurrent glutamatergic and metabolic dyshomeostasis in humans and male transgenic AD mice. Yet, it remains unclear how primary time-sensitive targeting of hippocampal glutamatergic activity may impact glucose regulation in an amyloidogenic mouse model. Previous studies have illustrated increased glucose uptake and metabolism using a neuroprotective glutamate modulator (riluzole), supporting the link between glucose and glutamatergic homeostasis.


Lifespan-extending interventions induce consistent patterns of fatty acid oxidation in mouse livers.

  • Kengo Watanabe‎ et al.
  • Communications biology‎
  • 2023‎

Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: