Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules.

  • Sabine M Görisch‎ et al.
  • Experimental cell research‎
  • 2003‎

In order to investigate the accessibility of the nucleoplasm for macromolecules with different physical properties, we microinjected FITC-conjugated dextrans of different sizes as well as anionic FITC-dextrans and FITC-poly-L-lysine into mammalian cell nuclei. Small dextrans displayed a homogeneous nuclear distribution. With increasing molecular mass (42 to 2500 kDa), FITC-dextrans were progressively excluded from chromatin regions, accumulating in and thereby outlining an apparently extended interchromatin space. Anionic FITC-dextrans (500 kDa) showed complete exclusion from labeled chromatin regions, while the positively charged FITC-poly-L-lysine was to some extent present within the chromatin regions. Moreover, the FITC-poly-L-lysine preferentially localized at the nuclear periphery. We also found a size-dependent exclusion of FITC-dextrans from nucleoli regions, while the FITC-poly-L-lysine accumulated in the nucleoli. Thus, the distinct and restricted nuclear accessibility for macromolecules is dependent on molecule size and electrical charge.


Local gene density predicts the spatial position of genetic loci in the interphase nucleus.

  • Andrea E Murmann‎ et al.
  • Experimental cell research‎
  • 2005‎

Specific chromosomal translocations are hallmarks of many human leukemias. The basis for these translocation events is poorly understood, but it has been assumed that spatial positioning of genes in the nucleus of hematopoietic cells is a contributing factor. Analysis of the nuclear 3D position of the gene MLL, frequently involved in chromosomal translocations and five of its translocation partners (AF4, AF6, AF9, ENL and ELL), and two control loci revealed a characteristic radial distribution pattern in all hematopoietic cells studied. Genes in areas of high local gene density were found positioned towards the nuclear center, whereas genes in regions of low gene density were detected closer to the nuclear periphery. The gene density within a 2 Mbp window was found to be a better predictor for the relative positioning of a genomic locus within the cell nucleus than the gene density of entire chromosomes. Analysis of the position of MLL, AF4, AF6 and AF9 in cell lines carrying chromosomal translocations involving these genes revealed that the position of the normal genes was different from that of the fusion genes, and this was again consistent with the changes in local gene density within a 2 Mbp window. Thus, alterations in gene density directly at translocation junctions could explain the change in the position of affected genes in leukemia cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: