Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors.

  • Adriano Mollica‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2017‎

Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.


Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors.

  • Ilaria D'Agostino‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2022‎

The enormous burden of the COVID-19 pandemic in economic and healthcare terms has cast a shadow on the serious threat of antimicrobial resistance, increasing the inappropriate use of antibiotics and shifting the focus of drug discovery programmes from antibacterial and antifungal fields. Thus, there is a pressing need for new antimicrobials involving innovative modes of action (MoAs) to avoid cross-resistance rise. Thiosemicarbazones (TSCs) stand out due to their easy preparation and polypharmacological application, also in infectious diseases. Recently, we reported a small library of TSCs (1-9) that emerged for their non-cytotoxic behaviour. Inspired by their multifaceted activity, we investigated the antibacterial, antifungal, and antidermatophytal profiles of derivatives 1-9, highlighting a new promising research line. Furthermore, the ability of these compounds to inhibit selected microbial and human carbonic anhydrases (CAs) was assessed, revealing their possible involvement in the MoA and a good selectivity index for some derivatives.


Synthesis and biological evaluation of new 3(2H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells.

  • Zeynep Özdemir‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2020‎

Novel 3(2H)-pyridazinone derivatives were designed, synthesised in satisfactory yields and evaluated in different experimental assays to assess their preliminary toxicity in vivo and anti-proliferative effects against HCT116 cell lines in vitro. Artemia salina lethality test provided LC50 values >100 µg/mL for all compounds. Successive assays revealed that some compounds were endowed with a promising anti-proliferative effect against HCT116 cells, alone or stimulated by serotonin as a pro-inflammatory factor in order to mimick an inflamed model in vivo of cancer cell microenvironment. Moreover, the kinurenic acid level after treatment with these newly synthesised compounds was monitored as a marker of anti-proliferation in colon carcinoma models. The IC50 values obtained for the best-in-class compounds were comparable to that of daunorubicin as a reference drug. Conversely, these compounds were not able to counteract the spontaneous migration of human cancer HCT116 cell line in the wound healing paradigm.


Benzo[b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity.

  • Paolo Guglielmi‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2019‎

A series of benzo[b]thiophen-3-ols were synthesised and investigated as potential human monoamine oxidase (hMAO) inhibitors in vitro as well as ex vivo in rat cortex synaptosomes by means of evaluation of 3,4-dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio and lactate dehydrogenase (LDH) activity. Most of these compounds possessed high selectivity for the MAO-B isoform and a discrete antioxidant and chelating potential. Molecular docking studies of all the compounds underscored potential binding site interactions suitable for MAO inhibition activity, and suggested structural requirements to further improve the activity of this scaffold by chemical modification of the aryl substituents. Starting from this heterocyclic nucleus, novel lead compounds for the treatment of neurodegenerative disease could be developed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: