Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

The genetic regulatory signature of type 2 diabetes in human skeletal muscle.

  • Laura J Scott‎ et al.
  • Nature communications‎
  • 2016‎

Type 2 diabetes (T2D) results from the combined effects of genetic and environmental factors on multiple tissues over time. Of the >100 variants associated with T2D and related traits in genome-wide association studies (GWAS), >90% occur in non-coding regions, suggesting a strong regulatory component to T2D risk. Here to understand how T2D status, metabolic traits and genetic variation influence gene expression, we analyse skeletal muscle biopsies from 271 well-phenotyped Finnish participants with glucose tolerance ranging from normal to newly diagnosed T2D. We perform high-depth strand-specific mRNA-sequencing and dense genotyping. Computational integration of these data with epigenome data, including ATAC-seq on skeletal muscle, and transcriptome data across diverse tissues reveals that the tissue-specific genetic regulatory architecture of skeletal muscle is highly enriched in muscle stretch/super enhancers, including some that overlap T2D GWAS variants. In one such example, T2D risk alleles residing in a muscle stretch/super enhancer are linked to increased expression and alternative splicing of muscle-specific isoforms of ANK1.


Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

  • Tuomas O Kilpeläinen‎ et al.
  • Nature communications‎
  • 2019‎

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.


Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci.

  • Xianyong Yin‎ et al.
  • Nature communications‎
  • 2022‎

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.


Growth hormone releasing hormone signaling promotes Th17 cell differentiation and autoimmune inflammation.

  • Lin Du‎ et al.
  • Nature communications‎
  • 2023‎

Dysregulation of Th17 cell differentiation and pathogenicity contributes to multiple autoimmune and inflammatory diseases. Previously growth hormone releasing hormone receptor (GHRH-R) deficient mice have been reported to be less susceptible to the induction of experimental autoimmune encephalomyelitis. Here, we show GHRH-R is an important regulator of Th17 cell differentiation in Th17 cell-mediated ocular and neural inflammation. We find that GHRH-R is not expressed in naïve CD4+ T cells, while its expression is induced throughout Th17 cell differentiation in vitro. Mechanistically, GHRH-R activates the JAK-STAT3 pathway, increases the phosphorylation of STAT3, enhances both non-pathogenic and pathogenic Th17 cell differentiation and promotes the gene expression signatures of pathogenic Th17 cells. Enhancing this signaling by GHRH agonist promotes, while inhibiting this signaling by GHRH antagonist or GHRH-R deficiency reduces, Th17 cell differentiation in vitro and Th17 cell-mediated ocular and neural inflammation in vivo. Thus, GHRH-R signaling functions as a critical factor that regulates Th17 cell differentiation and Th17 cell-mediated autoimmune ocular and neural inflammation.


Genetic insights into resting heart rate and its role in cardiovascular disease.

  • Yordi J van de Vegte‎ et al.
  • Nature communications‎
  • 2023‎

Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.


Contribution of common and rare variants to Asian neovascular age-related macular degeneration subtypes.

  • Qiao Fan‎ et al.
  • Nature communications‎
  • 2023‎

Neovascular age-related macular degeneration (nAMD), along with its clinical subtype known as polypoidal choroidal vasculopathy (PCV), are among the leading causes of vision loss in elderly Asians. In a genome-wide association study (GWAS) comprising 3,128 nAMD (1,555 PCV and 1,573 typical nAMD), and 5,493 controls of East Asian ancestry, we identify twelve loci, of which four are novel ([Formula: see text]). Substantial genetic sharing between PCV and typical nAMD is noted (rg = 0.666), whereas collagen extracellular matrix and fibrosis-related pathways are more pronounced for PCV. Whole-exome sequencing in 259 PCV patients revealed functional rare variants burden in collagen type I alpha 1 chain gene (COL1A1; [Formula: see text]) and potential enrichment of functional rare mutations at AMD-associated loci. At the GATA binding protein 5 (GATA5) locus, the most significant GWAS novel loci, the expressions of genes including laminin subunit alpha 5 (Lama5), mitochondrial ribosome associated GTPase 2 (Mtg2), and collagen type IX alpha 3 chain (Col9A3), are significantly induced during retinal angiogenesis and subretinal fibrosis in murine models. Furthermore, retinoic acid increased the expression of LAMA5 and MTG2 in vitro. Taken together, our data provide insights into the genetic basis of AMD pathogenesis in the Asian population.


Identification of new susceptibility loci for IgA nephropathy in Han Chinese.

  • Ming Li‎ et al.
  • Nature communications‎
  • 2015‎

IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis. Previously identified genome-wide association study (GWAS) loci explain only a fraction of disease risk. To identify novel susceptibility loci in Han Chinese, we conduct a four-stage GWAS comprising 8,313 cases and 19,680 controls. Here, we show novel associations at ST6GAL1 on 3q27.3 (rs7634389, odds ratio (OR)=1.13, P=7.27 × 10(-10)), ACCS on 11p11.2 (rs2074038, OR=1.14, P=3.93 × 10(-9)) and ODF1-KLF10 on 8q22.3 (rs2033562, OR=1.13, P=1.41 × 10(-9)), validate a recently reported association at ITGAX-ITGAM on 16p11.2 (rs7190997, OR=1.22, P=2.26 × 10(-19)), and identify three independent signals within the DEFA locus (rs2738058, P=1.15 × 10(-19); rs12716641, P=9.53 × 10(-9); rs9314614, P=4.25 × 10(-9), multivariate association). The risk variants on 3q27.3 and 11p11.2 show strong association with mRNA expression levels in blood cells while allele frequencies of the risk variants within ST6GAL1, ACCS and DEFA correlate with geographical variation in IgAN prevalence. Our findings expand our understanding on IgAN genetic susceptibility and provide novel biological insights into molecular mechanisms underlying IgAN.


Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.

  • Jennifer Wessel‎ et al.
  • Nature communications‎
  • 2015‎

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.


Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process.

  • Henriët Springelkamp‎ et al.
  • Nature communications‎
  • 2014‎

Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition.


CCDC102B confers risk of low vision and blindness in high myopia.

  • Yoshikatsu Hosoda‎ et al.
  • Nature communications‎
  • 2018‎

The incidence of high myopia is increasing worldwide with myopic maculopathy, a complication of myopia, often progressing to blindness. Our two-stage genome-wide association study of myopic maculopathy identifies a susceptibility locus at rs11873439 in an intron of CCDC102B (P = 1.77 × 10-12 and Pcorr = 1.61 × 10-10). In contrast, this SNP is not significantly associated with myopia itself. The association between rs11873439 and myopic maculopathy is further confirmed in 2317 highly myopic patients (P = 2.40 × 10-6 and Pcorr = 1.72 × 10-4). CCDC102B is strongly expressed in the retinal pigment epithelium and choroids, where atrophic changes initially occur in myopic maculopathy. The development of myopic maculopathy thus likely exhibits a unique background apart from the development of myopia itself; elucidation of the roles of CCDC102B in myopic maculopathy development may thus provide insights into preventive methods for blindness in patients with high myopia.


X-chromosome and kidney function: evidence from a multi-trait genetic analysis of 908,697 individuals reveals sex-specific and sex-differential findings in genes regulated by androgen response elements.

  • Markus Scholz‎ et al.
  • Nature communications‎
  • 2024‎

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Interethnic analyses of blood pressure loci in populations of East Asian and European descent.

  • Fumihiko Takeuchi‎ et al.
  • Nature communications‎
  • 2018‎

Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP.


A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape.

  • Janina S Ried‎ et al.
  • Nature communications‎
  • 2016‎

Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.


Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error.

  • Qiao Fan‎ et al.
  • Nature communications‎
  • 2016‎

Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.


New loci and coding variants confer risk for age-related macular degeneration in East Asians.

  • Ching-Yu Cheng‎ et al.
  • Nature communications‎
  • 2015‎

Age-related macular degeneration (AMD) is a major cause of blindness, but presents differently in Europeans and Asians. Here, we perform a genome-wide and exome-wide association study on 2,119 patients with exudative AMD and 5,691 controls, with independent replication in 4,226 patients and 10,289 controls, all of East Asian descent, as part of The Genetics of AMD in Asians (GAMA) Consortium. We find a strong association between CETP Asp442Gly (rs2303790), an East Asian-specific mutation, and increased risk of AMD (odds ratio (OR)=1.70, P=5.60 × 10(-22)). The AMD risk allele (442Gly), known to protect from coronary heart disease, increases HDL cholesterol levels by 0.17 mmol l(-1) (P=5.82 × 10(-21)) in East Asians (n=7,102). We also identify three novel AMD loci: C6orf223 Ala231Ala (OR=0.78, P=6.19 × 10(-18)), SLC44A4 Asp47Val (OR=1.27, P=1.08 × 10(-11)) and FGD6 Gln257Arg (OR=0.87, P=2.85 × 10(-8)). Our findings suggest that some of the genetic loci conferring AMD susceptibility in East Asians are shared with Europeans, yet AMD in East Asians may also have a distinct genetic signature.


Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

  • David Z Pan‎ et al.
  • Nature communications‎
  • 2018‎

Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.


Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits.

  • Anne E Justice‎ et al.
  • Nature communications‎
  • 2017‎

Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.


Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

  • Alexander Teumer‎ et al.
  • Nature communications‎
  • 2019‎

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.


Pla2g12b drives expansion of triglyceride-rich lipoproteins.

  • James H Thierer‎ et al.
  • Nature communications‎
  • 2024‎

Vertebrates transport hydrophobic triglycerides through the circulatory system by packaging them within amphipathic particles called Triglyceride-Rich Lipoproteins. Yet, it remains largely unknown how triglycerides are loaded onto these particles. Mutations in Phospholipase A2 group 12B (PLA2G12B) are known to disrupt lipoprotein homeostasis, but its mechanistic role in this process remains unclear. Here we report that PLA2G12B channels lipids within the lumen of the endoplasmic reticulum into nascent lipoproteins. This activity promotes efficient lipid secretion while preventing excess accumulation of intracellular lipids. We characterize the functional domains, subcellular localization, and interacting partners of PLA2G12B, demonstrating that PLA2G12B is calcium-dependent and tightly associated with the membrane of the endoplasmic reticulum. We also detect profound resistance to atherosclerosis in PLA2G12B mutant mice, suggesting an evolutionary tradeoff between triglyceride transport and cardiovascular disease risk. Here we identify PLA2G12B as a key driver of triglyceride incorporation into vertebrate lipoproteins.


New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk.

  • Yingchang Lu‎ et al.
  • Nature communications‎
  • 2016‎

To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: