Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 89 papers

Human factors and pathways essential for mediating epigenetic gene silencing.

  • Andrey Poleshko‎ et al.
  • Epigenetics‎
  • 2014‎

Cellular identity in both normal and disease processes is determined by programmed epigenetic activation or silencing of specific gene subsets. Here, we have used human cells harboring epigenetically silent GFP-reporter genes to perform a genome-wide siRNA knockdown screen for the identification of cellular factors that are required to maintain epigenetic gene silencing. This unbiased screen interrogated 21,121 genes, and we identified and validated a set of 128 protein factors. This set showed enrichment for functional categories, and protein-protein interactions. Among this set were known epigenetic silencing factors, factors with no previously identified role in epigenetic gene silencing, as well as unstudied factors. The set included non-nuclear factors, for example, components of the integrin-adhesome. A key finding was that the E1 and E2 enzymes of the small ubiquitin-like modifier (SUMO) pathway (SAE1, SAE2/UBA2, UBC9/UBE2I) are essential for maintenance of epigenetic silencing. This work provides the first genome-wide functional view of human factors that mediate epigenetic gene silencing. The screen output identifies novel epigenetic factors, networks, and mechanisms, and provides a set of candidate targets for epigenetic therapy and cellular reprogramming.


Identification of a 251 gene expression signature that can accurately detect M. tuberculosis in patients with and without HIV co-infection.

  • Noor Dawany‎ et al.
  • PloS one‎
  • 2014‎

Co-infection with tuberculosis (TB) is the leading cause of death in HIV-infected individuals. However, diagnosis of TB, especially in the presence of an HIV co-infection, can be limiting due to the high inaccuracy associated with the use of conventional diagnostic methods. Here we report a gene signature that can identify a tuberculosis infection in patients co-infected with HIV as well as in the absence of HIV.


Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark.

  • Niraj Lodhi‎ et al.
  • Nucleic acids research‎
  • 2014‎

Epigenetics are the heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. After mitosis, it is thought that bookmarking transcription factors remain at promoters, regulating which genes become active and which remain silent. Herein, we demonstrate that poly(ADP-ribose)polymerase-1 (PARP-1) is a genome-wide epigenetic memory mark in mitotic chromatin, and we further show that the presence of PARP-1 is absolutely crucial for reactivation of transcription after mitosis. Based on these findings, a novel molecular model of epigenetic memory transmission through the cell cycle is proposed.


Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma.

  • Marie R Webster‎ et al.
  • Molecular cell‎
  • 2020‎

Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.


Sialyl-LewisX Glycoantigen Is Enriched on Cells with Persistent HIV Transcription during Therapy.

  • Florent Colomb‎ et al.
  • Cell reports‎
  • 2020‎

A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.


African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin.

  • Kumar Sachin Singh‎ et al.
  • Nature communications‎
  • 2020‎

A variant at amino acid 47 in human TP53 exists predominantly in individuals of African descent. P47S human and mouse cells show increased cancer risk due to defective ferroptosis. Here, we show that this ferroptotic defect causes iron accumulation in P47S macrophages. This high iron content alters macrophage cytokine profiles, leads to higher arginase level and activity, and decreased nitric oxide synthase activity. This leads to more productive intracellular bacterial infections but is protective against malarial toxin hemozoin. Proteomics of macrophages reveal decreased liver X receptor (LXR) activation, inflammation and antibacterial defense in P47S macrophages. Both iron chelators and LXR agonists improve the response of P47S mice to bacterial infection. African Americans with elevated saturated transferrin and serum ferritin show higher prevalence of the P47S variant (OR = 1.68 (95%CI 1.07-2.65) p = 0.023), suggestive of its role in iron accumulation in humans. This altered macrophage phenotype may confer an advantage in malaria-endemic sub-Saharan Africa.


Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs.

  • Jérôme Mastio‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

We have identified a precursor that differentiates into granulocytes in vitro and in vivo yet belongs to the monocytic lineage. We have termed these cells monocyte-like precursors of granulocytes (MLPGs). Under steady state conditions, MLPGs were absent in the spleen and barely detectable in the bone marrow (BM). In contrast, these cells significantly expanded in tumor-bearing mice and differentiated to polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Selective depletion of monocytic cells had no effect on the number of granulocytes in naive mice but decreased the population of PMN-MDSCs in tumor-bearing mice by 50%. The expansion of MLPGs was found to be controlled by the down-regulation of Rb1, but not IRF8, which is known to regulate the expansion of PMN-MDSCs from classic granulocyte precursors. In cancer patients, putative MLPGs were found within the population of CXCR1+CD15-CD14+HLA-DR-/lo monocytic cells. These findings describe a mechanism of abnormal myelopoiesis in cancer and suggest potential new approaches for selective targeting of MDSCs.


Syntaphilin Regulates Neutrophil Migration in Cancer.

  • Shuyu Fu‎ et al.
  • Cancer immunology research‎
  • 2023‎

Pathologically activated neutrophils (PMN) with immunosuppressive activity, which are termed myeloid-derived suppressor cells (PMN-MDSC), play a critical role in regulating tumor progression. These cells have been implicated in promoting tumor metastases by contributing to premetastatic niche formation. This effect was facilitated by enhanced spontaneous migration of PMN from bone marrow to the premetastatic niches during the early-stage of cancer development. The molecular mechanisms underpinning this phenomenon remained unclear. In this study, we found that syntaphilin (SNPH), a cytoskeletal protein previously known for anchoring mitochondria to the microtubule in neurons and tumor cells, could regulate migration of PMN. Expression of SNPH was decreased in PMN from tumor-bearing mice and patients with cancer as compared with PMN from tumor-free mice and healthy donors, respectively. In Snph-knockout (SNPH-KO) mice, spontaneous migration of PMN was increased and the mice showed increased metastasis. Mechanistically, in SNPH-KO mice, the speed and distance travelled by mitochondria in PMN was increased, rates of oxidative phosphorylation and glycolysis were elevated, and generation of adenosine was increased. Thus, our study reveals a molecular mechanism regulating increased migratory activity of PMN during cancer progression and suggests a novel therapeutic targeting opportunity.


Fatty acid transport protein 2 reprograms neutrophils in cancer.

  • Filippo Veglia‎ et al.
  • Nature‎
  • 2019‎

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that are crucial for the regulation of immune responses in cancer. These cells contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite recent advances in the understanding of PMN-MDSC biology, the mechanisms responsible for the pathological activation of neutrophils are not well defined, and this limits the selective targeting of these cells. Here we report that mouse and human PMN-MDSCs exclusively upregulate fatty acid transport protein 2 (FATP2). Overexpression of FATP2 in PMN-MDSCs was controlled by granulocyte-macrophage colony-stimulating factor, through the activation of the STAT5 transcription factor. Deletion of FATP2 abrogated the suppressive activity of PMN-MDSCs. The main mechanism of FATP2-mediated suppressive activity involved the uptake of arachidonic acid and the synthesis of prostaglandin E2. The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSCs and substantially delayed tumour progression. In combination with checkpoint inhibitors, FATP2 inhibition blocked tumour progression in mice. Thus, FATP2 mediates the acquisition of immunosuppressive activity by PMN-MDSCs and represents a target to inhibit the functions of PMN-MDSCs selectively and to improve the efficiency of cancer therapy.


EZH2 Inhibition Sensitizes CARM1-High, Homologous Recombination Proficient Ovarian Cancers to PARP Inhibition.

  • Sergey Karakashev‎ et al.
  • Cancer cell‎
  • 2020‎

In response to DNA double-strand breaks, MAD2L2-containing shieldin complex plays a critical role in the choice between homologous recombination (HR) and non-homologous end-joining (NHEJ)-mediated repair. Here we show that EZH2 inhibition upregulates MAD2L2 and sensitizes HR-proficient epithelial ovarian cancer (EOC) to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor in a CARM1-dependent manner. CARM1 promotes MAD2L2 silencing by driving the switch from the SWI/SNF complex to EZH2 through methylating the BAF155 subunit of the SWI/SNF complex on the MAD2L2 promoter. EZH2 inhibition upregulates MAD2L2 to decrease DNA end resection, which increases NHEJ and chromosomal abnormalities, ultimately causing mitotic catastrophe in PARP inhibitor treated HR-proficient cells. Significantly, EZH2 inhibitor sensitizes CARM1-high, but not CARM-low, EOCs to PARP inhibitors in both orthotopic and patient-derived xenografts.


Small Extracellular Vesicle Regulation of Mitochondrial Dynamics Reprograms a Hypoxic Tumor Microenvironment.

  • Irene Bertolini‎ et al.
  • Developmental cell‎
  • 2020‎

The crosstalk between tumor cells and the adjacent normal epithelium contributes to cancer progression, but its regulators have remained elusive. Here, we show that breast cancer cells maintained in hypoxia release small extracellular vesicles (sEVs) that activate mitochondrial dynamics, stimulate mitochondrial movements, and promote organelle accumulation at the cortical cytoskeleton in normal mammary epithelial cells. This results in AKT serine/threonine kinase (Akt) activation, membrane focal adhesion turnover, and increased epithelial cell migration. RNA sequencing profiling identified integrin-linked kinase (ILK) as the most upregulated pathway in sEV-treated epithelial cells, and genetic or pharmacologic targeting of ILK reversed mitochondrial reprogramming and suppressed sEV-induced cell movements. In a three-dimensional (3D) model of mammary gland morphogenesis, sEV treatment induced hallmarks of malignant transformation, with deregulated cell death and/or cell proliferation, loss of apical-basal polarity, and appearance of epithelial-to-mesenchymal transition (EMT) markers. Therefore, sEVs released by hypoxic breast cancer cells reprogram mitochondrial dynamics and induce oncogenic changes in a normal mammary epithelium.


DAXX-ATRX regulation of p53 chromatin binding and DNA damage response.

  • Nitish Gulve‎ et al.
  • Nature communications‎
  • 2022‎

DAXX and ATRX are tumor suppressor proteins that form a histone H3.3 chaperone complex and are frequently mutated in cancers with the alternative lengthening of telomeres (ALT). Here, we show that DAXX and ATRX knock-out (KO) U87-T cells that have acquired ALT-like features have defects in p53 chromatin binding and DNA damage response. RNA-seq analysis revealed that p53 pathway is among the most perturbed. ChIP-seq and ATAC-seq revealed a genome-wide reduction in p53 DNA-binding and corresponding loss of chromatin accessibility at many p53 response elements across the genome. Both DAXX and ATRX null cells showed a depletion of histone H3.3 and accumulation of γH2AX at many p53 sites, including subtelomeres. These findings indicate that loss of DAXX or ATRX can compromise p53 chromatin binding and p53 DNA damage response in ALT-like cells, providing a link between histone composition, chromatin accessibility and tumor suppressor function of p53.


DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A.

  • Kelly E Leon‎ et al.
  • The Journal of cell biology‎
  • 2021‎

Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.


Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells.

  • Amelia J Tesone‎ et al.
  • Cell reports‎
  • 2016‎

Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.


Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles.

  • Julia Tchou‎ et al.
  • BMC medical genomics‎
  • 2012‎

Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2) of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs) within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes.


BET Bromodomain Inhibition Promotes Anti-tumor Immunity by Suppressing PD-L1 Expression.

  • Hengrui Zhu‎ et al.
  • Cell reports‎
  • 2016‎

Restoration of anti-tumor immunity by blocking PD-L1 signaling through the use of antibodies has proven to be beneficial in cancer therapy. Here, we show that BET bromodomain inhibition suppresses PD-L1 expression and limits tumor progression in ovarian cancer. CD274 (encoding PD-L1) is a direct target of BRD4-mediated gene transcription. In mouse models, treatment with the BET inhibitor JQ1 significantly reduced PD-L1 expression on tumor cells and tumor-associated dendritic cells and macrophages, which correlated with an increase in the activity of anti-tumor cytotoxic T cells. The BET inhibitor limited tumor progression in a cytotoxic T-cell-dependent manner. Together, these data demonstrate a small-molecule approach to block PD-L1 signaling. Given the fact that BET inhibitors have been proven to be safe with manageable reversible toxicity in clinical trials, our findings indicate that pharmacological BET inhibitors represent a treatment strategy for targeting PD-L1 expression.


A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy.

  • Emily J Lelliott‎ et al.
  • Scientific reports‎
  • 2019‎

Both targeted therapy and immunotherapy have been used successfully to treat melanoma, but the development of resistance and poor response rates to the individual therapies has limited their success. Designing rational combinations of targeted therapy and immunotherapy may overcome these obstacles, but requires assessment in preclinical models with the capacity to respond to both therapeutic classes. Herein, we describe the development and characterization of a novel, immunogenic variant of the BrafV600ECdkn2a-/-Pten-/- YUMM1.1 tumor model that expresses the immunogen, ovalbumin (YOVAL1.1). We demonstrate that, unlike parental tumors, YOVAL1.1 tumors are immunogenic in vivo and can be controlled by immunotherapy. Importantly, YOVAL1.1 tumors are sensitive to targeted inhibitors of BRAFV600E and MEK, responding in a manner consistent with human BRAFV600E melanoma. The YOVAL1.1 melanoma model is transplantable, immunogenic and sensitive to clinical therapies, making it a valuable platform to guide strategic development of combined targeted therapy and immunotherapy approaches in BRAFV600E melanoma.


ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay.

  • Masayuki Sakurai‎ et al.
  • Nature structural & molecular biology‎
  • 2017‎

Both p150 and p110 isoforms of ADAR1 convert adenosine to inosine in double-stranded RNA (dsRNA). ADAR1p150 suppresses the dsRNA-sensing mechanism that activates MDA5-MAVS-IFN signaling in the cytoplasm. In contrast, the biological function of the ADAR1p110 isoform, which is usually located in the nucleus, is largely unknown. Here, we show that stress-activated phosphorylation of ADAR1p110 by MKK6-p38-MSK MAP kinases promotes its binding to Exportin-5 and its export from the nucleus. After translocating to the cytoplasm, ADAR1p110 suppresses apoptosis in stressed cells by protecting many antiapoptotic gene transcripts that contain 3'-untranslated-region dsRNA structures primarily comprising inverted Alu repeats. ADAR1p110 competitively inhibits binding of Staufen1 to the 3'-untranslated-region dsRNAs and antagonizes Staufen1-mediated mRNA decay. Our study reveals a new stress-response mechanism in which human ADAR1p110 and Staufen1 regulate surveillance of a set of mRNAs required for survival of stressed cells.


The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis.

  • Jae Ho Seo‎ et al.
  • PLoS biology‎
  • 2016‎

Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB) in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating "stress" signals of 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a "drugable" therapeutic target in cancer.


NAD+ metabolism governs the proinflammatory senescence-associated secretome.

  • Timothy Nacarelli‎ et al.
  • Nature cell biology‎
  • 2019‎

Cellular senescence is a stable growth arrest that is implicated in tissue ageing and cancer. Senescent cells are characterized by an upregulation of proinflammatory cytokines, which is termed the senescence-associated secretory phenotype (SASP). NAD+ metabolism influences both tissue ageing and cancer. However, the role of NAD+ metabolism in regulating the SASP is poorly understood. Here, we show that nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage pathway, governs the proinflammatory SASP independent of senescence-associated growth arrest. NAMPT expression is regulated by high mobility group A (HMGA) proteins during senescence. The HMGA-NAMPT-NAD+ signalling axis promotes the proinflammatory SASP by enhancing glycolysis and mitochondrial respiration. HMGA proteins and NAMPT promote the proinflammatory SASP through NAD+-mediated suppression of AMPK kinase, which suppresses the p53-mediated inhibition of p38 MAPK to enhance NF-κB activity. We conclude that NAD+ metabolism governs the proinflammatory SASP. Given the tumour-promoting effects of the proinflammatory SASP, our results suggest that anti-ageing dietary NAD+ augmentation should be administered with precision.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: