Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas.

  • Ja Eun Kim‎ et al.
  • Oncotarget‎
  • 2015‎

Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) has become the main treatment modality in malignant gliomas. However unlike glioblastomas, there are inconsistent result about fluorescence status in WHO grade III gliomas. Here, we show that mutational status of IDH1 is linked to 5-ALA fluorescence. Using genetically engineered malignant glioma cells harboring wild type (U87MG-IDH1WT) or mutant (U87MG-IDH1R132H) IDH1, we demonstrated a lag in 5-ALA metabolism and accumulation of protoporphyrin IX (PpIX) in U87MG-IDH1R132Hcells. Next, we used liquid chromatography-mass spectrometry (LC-MS) to screen for tricarboxylic acid (TCA) cycle-related metabolite changes caused by 5-ALA exposure. We observed low baseline levels of NADPH, an essential cofactor for the rate-limiting step of heme degradation, in U87MG-IDH1R132H cells. High levels of NADPH are required to metabolize excessive 5-ALA, giving a plausible reason for the temporarily enhanced 5-ALA fluorescence in mutant IDH1 cells. This hypothesis was supported by the results of metabolic screening in human malignant glioma samples. In conclusion, we have discovered a relationship between enhanced 5-ALA fluorescence and IDH1 mutations in WHO grade III gliomas. Low levels of NADPH in tumors with mutated IDH1 is responsible for the enhanced fluorescence.


TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.

  • Tara Spence‎ et al.
  • Acta neuropathologica‎
  • 2014‎

Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.


Glioma-derived cancer stem cells are hypersensitive to proteasomal inhibition.

  • Young Dong Yoo‎ et al.
  • EMBO reports‎
  • 2017‎

Although proteasome inhibitors (PIs) are used as anticancer drugs to treat various cancers, their relative therapeutic efficacy on stem cells vs. bulk cancers remains unknown. Here, we show that stem cells derived from gliomas, GSCs, are up to 1,000-fold more sensitive to PIs (IC50, 27-70 nM) compared with their differentiated controls (IC50, 47 to »100 μM). The stemness of GSCs correlates to increased ubiquitination, whose misregulation readily triggers apoptosis. PI-induced apoptosis of GSCs is independent of NF-κB but involves the phosphorylation of c-Jun N-terminal kinase as well as the transcriptional activation of endoplasmic reticulum (ER) stress-associated proapoptotic mediators. In contrast to the general notion that ER stress-associated apoptosis is signaled by prolonged unfolded protein response (UPR), GSC-selective apoptosis is instead counteracted by the UPR ATF3 is a key mediator in GSC-selective apoptosis. Pharmaceutical uncoupling of the UPR from its downstream apoptosis sensitizes GSCs to PIs in vitro and during tumorigenesis in mice. Thus, a combinational treatment of a PI with an inhibitor of UPR-coupled apoptosis may enhance targeting of stem cells in gliomas.


miRNA expression analysis in cortical dysplasia: regulation of mTOR and LIS1 pathway.

  • Ji Yeoun Lee‎ et al.
  • Epilepsy research‎
  • 2014‎

Cortical dysplasia (CD) is a common cause of epilepsy in children and is characterized by focal regions of malformed cerebral cortex. The pathogenesis and epileptogenesis of CD have not been fully elucidated, and in particular, the potential role of epigenetics has not been examined. miRNA microarray was performed on surgical specimens from CD (n=8) and normal control (n=2) children. A total of 10 differentially expressed miRNAs (DEmiRs) that were up-regulated in CD were identified including hsa-miR-21 and hsa-miR-155. The microarray results were validated using quantitative real-time PCR. After searching for the putative target genes of the DEmiRs, their biological significance was further evaluated by exploring the pathways in which the genes were enriched. The mammalian target of rapamycin (mTOR) signaling pathway was the most significantly associated, and the pathway of lissencephaly gene in neuronal migration and development was also noted. This study suggests a possible role for miRNAs in the pathogenesis of CD, especially in relation to the mTOR signaling pathway. Future studies on the epigenetic mechanisms underlying CD pathogenesis and epileptogenesis are needed.


Development of a targeted sequencing approach to identify prognostic, predictive and diagnostic markers in paediatric solid tumours.

  • Elisa Izquierdo‎ et al.
  • Oncotarget‎
  • 2017‎

The implementation of personalised medicine in childhood cancers has been limited by a lack of clinically validated multi-target sequencing approaches specific for paediatric solid tumours. In order to support innovative clinical trials in high-risk patients with unmet need, we have developed a clinically relevant targeted sequencing panel spanning 311 kb and comprising 78 genes involved in childhood cancers. A total of 132 samples were used for the validation of the panel, including Horizon Discovery cell blends (n=4), cell lines (n=15), formalin-fixed paraffin embedded (FFPE, n=83) and fresh frozen tissue (FF, n=30) patient samples. Cell blends containing known single nucleotide variants (SNVs, n=528) and small insertion-deletions (indels n=108) were used to define panel sensitivities of ≥98% for SNVs and ≥83% for indels [95% CI] and panel specificity of ≥98% [95% CI] for SNVs. FFPE samples performed comparably to FF samples (n=15 paired). Of 95 well-characterised genetic abnormalities in 33 clinical specimens and 13 cell lines (including SNVs, indels, amplifications, rearrangements and chromosome losses), 94 (98.9%) were detected by our approach. We have validated a robust and practical methodology to guide clinical management of children with solid tumours based on their molecular profiles. Our work demonstrates the value of targeted gene sequencing in the development of precision medicine strategies in paediatric oncology.


Intertumoral Heterogeneity within Medulloblastoma Subgroups.

  • Florence M G Cavalli‎ et al.
  • Cancer cell‎
  • 2017‎

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Clinicopathological findings of pediatric NTRK fusion mesenchymal tumors.

  • Jeongwan Kang‎ et al.
  • Diagnostic pathology‎
  • 2020‎

While ETV6- NTRK3 fusion is common in infantile fibrosarcoma, NTRK1/3 fusion in pediatric tumors is scarce and, consequently, not well known. Herein, we evaluated for the presence of NTRK1/3 fusion in pediatric mesenchymal tumors, clinicopathologically and immunophenotypically.


Actin chromobody imaging reveals sub-organellar actin dynamics.

  • Cara R Schiavon‎ et al.
  • Nature methods‎
  • 2020‎

The actin cytoskeleton plays multiple critical roles in cells, from cell migration to organelle dynamics. The small and transient actin structures regulating organelle dynamics are challenging to detect with fluorescence microscopy, making it difficult to determine whether actin filaments are directly associated with specific membranes. To address these limitations, we developed fluorescent-protein-tagged actin nanobodies, termed 'actin chromobodies' (ACs), targeted to organelle membranes to enable high-resolution imaging of sub-organellar actin dynamics.


The incidence of childhood cancer in Australia, 1983-2015, and projections to 2035.

  • Danny R Youlden‎ et al.
  • The Medical journal of Australia‎
  • 2020‎

To describe changes in childhood cancer incidence in Australia, 1983-2015, and to estimate projected incidence to 2035.


Disulfiram, a Re-positioned Aldehyde Dehydrogenase Inhibitor, Enhances Radiosensitivity of Human Glioblastoma Cells In Vitro.

  • Hyeon Kang Koh‎ et al.
  • Cancer research and treatment‎
  • 2019‎

Glioblastoma, the most common brain tumor in adults, has poor prognosis. The purpose of this study was to determine the effect of disulfiram (DSF), an aldehyde dehydrogenase inhibitor, on in vitro radiosensitivity of glioblastoma cells with different methylation status of O6-methylguanine-DNA methyltransferase (MGMT) promoter and the underlying mechanism of such effect.


M1 macrophage recruitment correlates with worse outcome in SHH Medulloblastomas.

  • Chanhee Lee‎ et al.
  • BMC cancer‎
  • 2018‎

Recent progress in molecular analysis has advanced the understanding of medulloblastoma (MB) and is anticipated to facilitate management of the disease. MB is composed of 4 molecular subgroups: WNT, SHH, Group 3, and Group 4. Macrophages play a crucial role in the tumor microenvironment; however, the functional role of their activated phenotype (M1/M2) remains controversial. Herein, we investigate the correlation between tumor-associated macrophage (TAM) recruitment within the MB subgroups and prognosis.


Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma.

  • Liana Nobre‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses.


The telomere maintenance mechanism spectrum and its dynamics in gliomas.

  • Sojin Kim‎ et al.
  • Genome medicine‎
  • 2022‎

The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues.


Measurable residual disease analysis in paediatric acute lymphoblastic leukaemia patients with ABL-class fusions.

  • Nicola C Venn‎ et al.
  • British journal of cancer‎
  • 2022‎

ABL-class fusions including NUP214-ABL1 and EBF1-PDGFRB occur in high risk acute lymphoblastic leukaemia (ALL) with gene expression patterns similar to BCR-ABL-positive ALL. Our aim was to evaluate new DNA-based measurable residual disease (MRD) tests detecting these fusions and IKZF1-deletions in comparison with conventional immunoglobulin/T-cell receptor (Ig/TCR) markers.


NPM1 as a potential therapeutic target for atypical teratoid/rhabdoid tumors.

  • Ji Hoon Phi‎ et al.
  • BMC cancer‎
  • 2019‎

Atypical teratoid/rhabdoid tumors (AT/RTs) are highly malignant brain tumors with inactivation of the SMARCB1 gene, which play a critical role in genomic transcriptional control. In this study, we analyzed the genomic and transcriptomic profiles of human AT/RTs to discover new druggable targets.


Adaptation of the plasma inhibitory activity assay to detect Aurora, ABL and FLT3 kinase inhibition by AT9283 in pediatric leukemia.

  • Jennifer E Podesta‎ et al.
  • Leukemia research‎
  • 2011‎

Non-invasive assessment of biomarker modulation is important for evaluating targeted therapeutics, particularly in pediatrics. The plasma inhibitory activity (PIA) assay is used clinically to assess FLT3 inhibition ex vivo and guide dosing. AT9283 is a novel Aurora kinase inhibitor with secondary activity against FLT3 and ABL. We adapted the PIA assay to simultaneously detect inhibition of Aurora and FLT3 in AML, and Aurora and ABL in CML by AT9283. Furthermore, we optimized the assay for children, where limited blood volumes are available for pharmacodynamic studies. Simultaneously detecting multiple kinase inhibition may identify important mechanisms of action for novel anti-leukemic drugs.


HOXA10 is associated with temozolomide resistance through regulation of the homologous recombinant DNA repair pathway in glioblastoma cell lines.

  • Jin Wook Kim‎ et al.
  • Genes & cancer‎
  • 2014‎

Temozolomide resistance is associated with multiple DNA repair pathways. We investigated homeobox (HOX) genes for their role in temozolomide resistance, focusing on the homologous recombination (HR) pathway, and we tested their therapeutic implications in conjunction with O(6)-methylguanine DNA methyltransferase (MGMT) status. Two glioblastoma cell lines with different MGMT statuses were used to test the augmented anticancer effect of temozolomide with HOXA10 inhibition. In vitro experiments, including gene expression studies with RNA interference, were performed to verify the related pathway dynamics. HOXA10 inhibition reinforced temozolomide sensitivity independent of MGMT status and was related to the impaired double-strand DNA breakage repair process resulting from the downregulation of Rad51 paralogs. Early growth response 1 (EGR1) and phosphatase and tensin homolog (PTEN) were the regulatory mediators between HOXA10 and the HR pathway. Moreover, HOXA10 inhibition selectively affected the nuclear function of PTEN without interfering with its cytoplasmic function of suppressing the phosphoinositide 3-kinase/Akt pathway. The mechanism of HR pathway regulation by HOXA10 harbors another target mechanism for overcoming temozolomide resistance in glioblastoma patients.


LIN28B is highly expressed in atypical teratoid/rhabdoid tumor (AT/RT) and suppressed through the restoration of SMARCB1.

  • Seung Ah Choi‎ et al.
  • Cancer cell international‎
  • 2016‎

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor that almost exclusively develops in young children. AT/RT belongs to the embryonal brain tumor group, comprising primitive tumors recapitulating the early development of the central nervous system during embryogenesis. The loss of SMARCB1 protein expression is a hallmark of AT/RT pathogenesis. LIN28A/B is a key gene in embryonic development and for the maintenance of pluripotency in stem cells. LIN28B might be an important co-player in AT/RT pathogenesis, considering the primitive nature and young age onset of AT/RT.


Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma.

  • Hamid Nikbakht‎ et al.
  • Nature communications‎
  • 2016‎

Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M--including H3.2K27M--mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: