Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis.

  • Hiroshi Kinashi‎ et al.
  • Kidney international‎
  • 2017‎

Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its possible involvement in lymphangiogenesis has not been explored. We found prominent lymphangiogenesis during tubulointerstitial fibrosis to be associated with increased expression of CTGF and VEGF-C in human obstructed nephropathy as well as in diabetic kidney disease. Using CTGF knockout mice, we investigated the involvement of CTGF in development of fibrosis and associated lymphangiogenesis in obstructive nephropathy. The increase of lymphatic vessels and VEGF-C in obstructed kidneys was significantly reduced in CTGF knockout compared to wild-type mice. Also in mouse kidneys subjected to ischemia-reperfusion injury, CTGF knockdown was associated with reduced lymphangiogenesis. In vitro, CTGF induced VEGF-C production in HK-2 cells, while CTGF siRNA suppressed transforming growth factor β1-induced VEGF-C upregulation. Furthermore, surface plasmon resonance analysis showed that CTGF and VEGF-C directly interact. Interestingly, VEGF-C-induced capillary-like tube formation by human lymphatic endothelial cells was suppressed by full-length CTGF but not by naturally occurring proteolytic CTGF fragments. Thus, CTGF is significantly involved in fibrosis-associated renal lymphangiogenesis through regulation of, and direct interaction with, VEGF-C.


Connective tissue growth factor promoter activity in normal and wounded skin.

  • Mohit Kapoor‎ et al.
  • Fibrogenesis & tissue repair‎
  • 2008‎

In skin, connective tissue growth factor (CTGF/CCN2) is induced during tissue repair. However, what the exact cell types are that express CTGF in normal and wounded skin remain controversial. In this report, we use transgenic knock-in mice in which the Pacific jellyfish Aequorea victoria enhanced green fluorescent protein (E-GFP) gene has been inserted between the endogenous CTGF promoter and gene. Unwounded (day 0) and wounded (days 3 and 7) skin was examined for GFP to detect cells in which the CTGF promoter was active, alpha-smooth muscle actin (alpha-SMA) to detect myofibroblasts, and NG2 expression to detect pericytes. In unwounded mice, CTGF expression was absent in epidermis and was present in a few cells in the dermis. Upon wounding, CTGF expression was induced in the dermis. Double immunolabeling revealed that CTGF-expressing cells also expressed alpha-SMA, indicating the CTGF was expressed in myofibroblasts. A subset (approximately 30%) of myofibroblasts were also NG2 positive, indicating that pericytes significantly contributed to the number of myofibroblasts in the wound. Pericytes also expressed CTGF. Collectively, these results indicate that CTGF expression in skin correlates with myofibroblast induction, and that CTGF-expressing pericytes are significant contributors to myofibroblast activity during cutaneous tissue repair.


Connective tissue growth factor is induced in bleomycin-induced skin scleroderma.

  • Shangxi Liu‎ et al.
  • Journal of cell communication and signaling‎
  • 2010‎

The origin of fibrotic cells within connective tissue is unclear. For example, the extent to which microvascular pericytes contribute to the number of myofibroblasts present in dermal fibrosis in uncertain. Connective tissue growth factor (CTGF/CCN2) is a marker and mediator of fibrosis. In this report, we use an antibody recognizing CCN2 to assess the cell types in mouse dermis which express CCN2 in the bleomycin model of skin scleroderma. Control (PBS injected) and fibrotic (bleomycin-injected) dermis was examined for CCN2, alpha-smooth muscle actin (alpha-SMA) (to detect myofibroblasts), and NG2 (to detect pericytes) expression. Consistent with previously published data, CCN2 expression was largely absent in the dermis of control mice. However, upon exposure to bleomycin, CCN2 was observed in the dermis. Cells that expressed CCN2 were alpha-SMA-expressing myofibroblasts. Approximately 85% of myofibroblasts were NG2-positive, CCN2-expressing pericytes, indicating that pericytes significantly contributed to the presence of myofibroblasts in sclerotic dermis. Thus CCN2 is induced in fibrotic skin, correlating with the induction of myofibroblast induction. Moreover, CCN2-expressing pericytes significantly contribute to the appearance of myofibroblasts in bleomycin-induced skin scleroderma.


Activation of the connective tissue growth factor (CTGF)-transforming growth factor β 1 (TGF-β 1) axis in hepatitis C virus-expressing hepatocytes.

  • Tirumuru Nagaraja‎ et al.
  • PloS one‎
  • 2012‎

The pro-fibrogenic cytokine connective tissue growth factor (CTGF) plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV)-induced liver fibrosis remains unclear.


Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis.

  • Katsunari Makino‎ et al.
  • Arthritis research & therapy‎
  • 2017‎

Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. Although the involvement of connective tissue growth factor (CTGF/CCN2) has been well-documented in SSc fibrosis, the therapeutic potential of targeting CTGF in SSc has not been fully investigated. Our aim was to examine the therapeutic potential of CTGF blockade in a preclinical model of SSc using two approaches: smooth muscle cell fibroblast-specific deletion of CTGF (CTGF knockout (KO)) or a human anti-CTGF monoclonal antibody, FG-3019.


Yin/Yang expression of CCN family members: Transforming growth factor beta 1, via ALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts.

  • Alexander Peidl‎ et al.
  • PloS one‎
  • 2019‎

The role of the microenvironment in driving connective tissue disease is being increasingly appreciated. Matricellular proteins of the CCN family are signaling modifiers that are secreted by cells into the extracellular matrix microenvironment where they have profound, context-dependent effects on organ development, homeostasis and disease. Indeed, CCN proteins are emergent targets for therapeutic intervention. Recent evidence suggests that, in vivo, CCN3 has effects opposing CCN2. Moreover, when CCN3 expression is high, CCN2 expression is low. That is, they appear to be regulated in a yin/yang fashion, leading to the hypothesis that the CCN2:CCN3 ratio is important to control tissue homeostasis. To begin to test the hypothesis that alterations in CCN2:CCN3 expression might be important in skin biology in vivo, we evaluated the relative ex vivo effects of the profibrotic protein TGFbeta1 on dermal fibroblasts on protein and RNA expression of CCN3 and CCN2, as well as the related protein CCN1. We also used signal transduction inhibitors to begin to identify the signal transduction pathways controlling the ability of fibroblasts to respond to TGFbeta1. As anticipated, CCN1 and CCN2 protein and mRNA were induced by TGFbeta1 in human dermal fibroblasts. This induction was blocked by TAK1, FAK, YAP1 and MEK inhibition. Conversely, TGFbeta1 suppressed CCN3 mRNA expression in a fashion insensitive to FAK, MEK, TAK1 or YAP1 inhibition. Unexpectedly, CCN3 protein was not detected in human dermal fibroblasts basally. These data suggest that, in dermal fibroblasts, the profibrotic protein TGFbeta1 has a divergent effect on CCN3 relative to CCN2 and CCN1, both at the mRNA and protein level. Given that the major source in skin in vivo of CCN proteins are fibroblasts, our data are consistent that alterations in CCN2/CCN1: CCN3 ratios in response to profibrotic agents such as TGFbeta1 may play a role in connective tissue pathologies including fibrosis.


Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues.

  • Luke Morgan-Rowe‎ et al.
  • Fibrogenesis & tissue repair‎
  • 2011‎

Systemic sclerosis (SSc) is a chronic inflammatory autoimmune disease characterised by vascular dysfunction and damage, excess collagen deposition and subsequent organ manifestations. Vasculopathy is an early feature of the disease which leads to a chronic hypoxic environment in the tissues. Paradoxically, there is a lack of angiogenesis. We hypothesised that this may in part be due to a nonphysiological, overriding upregulation in antiangiogenic factors produced by the hypoxic tissues. We considered thrombospondin 1 (TSP-1) as a candidate antiangiogenic factor.


5Z-7-Oxozeanol Inhibits the Effects of TGFβ1 on Human Gingival Fibroblasts.

  • Hanna Kuk‎ et al.
  • PloS one‎
  • 2015‎

Transforming growth factor (TGF)β acts on fibroblasts to promote the production and remodeling of extracellular matrix (ECM). In adult humans, excessive action of TGFβ is associated with fibrotic disease and fibroproliferative conditions, including gingival hyperplasia. Understanding how the TGFβ1 signals in fibroblasts is therefore likely to result in valuable insights into the fundamental mechanisms underlying fibroproliferative disorders. Previously, we used the TAK1 inhibitor (5Z)-7-Oxozeaenol to show that, in dermal fibroblasts, the non-canonical TAK1 pathway mediates the ability of TGFβ1 to induce genes promoting tissue remodeling and repair. However, the extent to which TAK1 mediates fibroproliferative responses in fibroblasts in response to TGFβ1 remains unclear. Herein, we show that, in gingival fibroblasts, (5Z)-7-Oxozeaenol blocks the ability of TGFβ1 to induce expression of the pro-fibrotic mediator CCN2 (connective tissue growth factor, CTGF) and type I collagen protein. Moreover, genome-wide expression profiling revealed that, in gingival fibroblasts, (5Z)-7-Oxozeaenol reduces the ability of TGFβ1 to induce mRNA expression of essentially all TGFβ1-responsive genes (139/147), including those involved with a hyperproliferative response. Results from microarray analysis were confirmed using real time polymerase chain reaction analysis and a functional cell proliferation assay. Our results are consistent with the hypothesis that TAK1 inhibitors might be useful in treating fibroproliferative disorders, including that in the oral cavity.


CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload.

  • Magda S C Fontes‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2015‎

One of the main contributors to maladaptive cardiac remodeling is fibrosis. Connective tissue growth factor (CTGF), a matricellular protein that is secreted into the cardiac extracellular matrix by both cardiomyocytes and fibroblasts, is often associated with development of fibrosis. However, recent studies have questioned the role of CTGF as a pro-fibrotic factor. Therefore, we aimed to investigate the effect of CTGF on cardiac fibrosis, and on functional, structural, and electrophysiological parameters in a mouse model of CTGF knockout (KO) and chronic pressure overload.


Wnt 10b activates the CCN2 promoter in NIH 3T3 fibroblasts through the Smad response element.

  • Shaoqiong Chen‎ et al.
  • Journal of cell communication and signaling‎
  • 2009‎

Wnt proteins elevate expression of the CCN family. For example, Wnt10b induces the fibrogenic pro-adhesive molecule connective tissue growth factor (CTGF, CCN2) in NIH 3T3 fibroblasts. Wnt10b activates the CCN2 minimal promoter. In this report, we map the Wnt10b response element in the CCN2 minimal promoter to the previously identified Smad response element. These results suggest that Wnts may cross-talk with the Smad signaling pathway to induce fibrotic responses in fibroblasts.


Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex.

  • Ebru Ercan‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Disruption of myelination during development has been implicated in a range of neurodevelopmental disorders including tuberous sclerosis complex (TSC). TSC patients with autism display impairments in white matter integrity. Similarly, mice lacking neuronal Tsc1 have a hypomyelination phenotype. However, the mechanisms that underlie these phenotypes remain unknown. In this study, we demonstrate that neuronal TSC1/2 orchestrates a program of oligodendrocyte maturation through the regulated secretion of connective tissue growth factor (CTGF). We characterize oligodendrocyte maturation both in vitro and in vivo. We find that neuron-specific Tsc1 deletion results in an increase in CTGF secretion that non-cell autonomously stunts oligodendrocyte development and decreases the total number of oligodendrocytes. Genetic deletion of CTGF from neurons, in turn, mitigates the TSC-dependent hypomyelination phenotype. These results show that the mechanistic target of rapamycin (mTOR) pathway in neurons regulates CTGF production and secretion, revealing a paracrine mechanism by which neuronal signaling regulates oligodendrocyte maturation and myelination in TSC. This study highlights the role of mTOR-dependent signaling between neuronal and nonneuronal cells in the regulation of myelin and identifies an additional therapeutic avenue for this disease.


CCN2 modulates hair follicle cycling in mice.

  • Shangxi Liu‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells-epithelial cells located in the follicle bulge-are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin-dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.


Mechanical tension increases CCN2/CTGF expression and proliferation in gingival fibroblasts via a TGFβ-dependent mechanism.

  • Fen Guo‎ et al.
  • PloS one‎
  • 2011‎

Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin.


Pericytes display increased CCN2 expression upon culturing.

  • Xu Shiwen‎ et al.
  • Journal of cell communication and signaling‎
  • 2009‎

By providing a source of alpha-smooth muscle actin (alpha-SMA)-expressing myofibroblasts, microvascular pericytes contribute to the matrix remodeling that occurs during tissue repair. However, the extent to which pericytes may contribute to the fibroblast phenotype post-repair is unknown. In this report, we test whether pericytes isolated from human placenta can in principle become fibroblast-like. Pericytes were cultured in vitro for 11 passages. The Affymetrix mRNA expression profile of passage 2 and passage 11 pericytes was compared. The expression of type I collagen, thrombospondin and fibronectin mRNAs was induced by passaging pericytes in culture. This induction of a fibroblast phenotype was paralleled by induction of connective tissue growth factor (CTGF/CCN2) and type I collagen protein expression and the fibroblast marker ASO2. These results indicate that, in principle, pericytes have the capacity to become fibroblast-like and that pericytes may contribute to the population of fibroblasts in a healed wound.


miR-218 regulates focal adhesion kinase-dependent TGFβ signaling in fibroblasts.

  • Fen Guo‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Scarring, which occurs in essentially all adult tissue, is characterized by the excessive production and remodeling of extracellular matrix by α-smooth muscle actin (SMA)-expressing myofibroblasts located within connective tissue. Excessive scarring can cause organ failure and death. Oral gingivae do not scar. Compared to dermal fibroblasts, gingival fibroblasts are less responsive to transforming growth factor β (TGFβ) due to the reduced expression, due to the reduced expression and activity of focal adhesion kinase (FAK) by this cell type. Here we show that, compared with dermal fibroblasts, gingival fibroblasts show reduced expression of miR-218. Introduction of pre-miR-218 into gingival fibroblasts elevates FAK expression and, via a FAK/src-dependent mechanism, results in the ability of TGFβ to induce α-SMA. The deubiquitinase cezanne is a direct target of miR-218 and has increased expression in gingival fibroblasts compared with dermal fibroblasts. Knockdown of cezanne in gingival fibroblasts increases FAK expression and causes TGFβ to induce α-smooth muscle actin (α-SMA). These results suggest that miR-218 regulates the ability of TGFβ to induce myofibroblast differentiation in fibroblasts via cezanne/FAK.


Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice.

  • Miki Nishio‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2016‎

Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway that coactivate large tumor suppressor homolog (LATS) kinases. Mob1a/1b double deficiency in mouse liver (LMob1DKO) results in hyperplasia of oval cells and immature cholangiocytes accompanied by inflammatory cell infiltration and fibrosis. More than half of mutant mice die within 3 wk of birth. All survivors eventually develop liver cancers, particularly combined hepatocellular and cholangiocarcinomas (cHC-CCs) and intrahepatic cholangiocellular carcinomas (ICCs), and die by age 60 wk. Because this phenotype is the most severe among mutant mice lacking a Hippo signaling component, MOB1A/1B constitute the critical hub of Hippo signaling in mammalian liver. LMob1DKO liver cells show hyperproliferation, increased cell saturation density, hepatocyte dedifferentiation, enhanced epithelial-mesenchymal transition and cell migration, and elevated transforming growth factor beta(TGF-β)2/3 production. These changes are strongly dependent on Yes-Associated Protein-1 (Yap1) and partially dependent on PDZ-binding motif (Taz) and Tgfbr2, but independent of connective tissue growth factor (Ctgf). In human liver cancers, YAP1 activation is frequent in cHC-CCs and ICCs and correlates with SMAD family member 2 activation. Drug screening revealed that antiparasitic macrocyclic lactones inhibit YAP1 activation in vitro and in vivo. Targeting YAP1/TAZ with these drugs in combination with inhibition of the TGF-β pathway may be effective treatment for cHC-CCs and ICCs.


Activation of cancer-associated fibroblasts is required for tumor neovascularization in a murine model of melanoma.

  • James Hutchenreuther‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2018‎

Metastatic melanoma is highly fatal. Within the tumor microenvironment, the role of cancer-associated fibroblasts (CAFs) in melanoma metastasis and progression is relatively understudied. The matricellular protein CCN2 (formerly termed connective tissue growth factor, CTGF) is overexpressed, in a fashion independent of BRAF mutational status, by CAFs in melanoma. Herein, we find, in human melanoma patients, that CCN2 expression negatively correlates with survival and positively correlates with expression of neovascularization markers. To assess the role of CAFs in melanoma progression, we used C57BL/6 mice expressing a tamoxifen-dependent cre recombinase expressed under the control of a fibroblast-specific promoter/enhancer (COL1A2) to delete CCN2 postnatally in fibroblasts. Mice deleted or not for CCN2 in fibroblasts were injected subcutaneously with B16-F10 melanoma cells. Loss of CCN2 in CAFs resulted in reduced CAF activation, as detected by staining with anti-α-smooth muscle actin antibodies, and reduced tumor-induced neovascularization, as detected by micro-computed tomography (micro-CT) and staining with anti-CD31 antibodies. CCN2-deficient B16(F10) cells were defective in a tubule formation/vasculogenic mimicry assay in vitro. Mice deleted for CCN2 in CAFs also showed impaired vasculogenic mimicry of subcutaneously-injected B16-F10 cells in vivo. Our results provide new insights into the cross-talk among different cell types in the tumor microenvironment and suggest CAFs play a heretofore unappreciated role by being essential for tumor neovascularization via the production of CCN2. Our data are consistent with the hypothesis that activated CAFs are essential for melanoma metastasis and that, due to its role in this process, CCN2 is a therapeutic target for melanoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: