Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Fatty Acid Supplementation Reverses the Small Colony Variant Phenotype in Triclosan-Adapted Staphylococcus aureus: Genetic, Proteomic and Phenotypic Analyses.

  • Abdulrahman S Bazaid‎ et al.
  • Scientific reports‎
  • 2018‎

Staphylococcus aureus can develop a small colony variant (SCV) phenotype in response to sub-lethal exposure to the biocide triclosan. In the current study, whole genome sequencing was performed and changes in virulence were investigated in five Staphylococcus aureus strains following repeated exposure to triclosan. Following exposure, 4/5 formed SCV and exhibited point mutations in the triclosan target gene fabI with 2/4 SCVs showing mutations in both fabI and fabD. The SCV phenotype was in all cases immediately reversed by nutritional supplementation with fatty acids or by repeated growth in the absence of triclosan, although fabI mutations persisted in 3/4 reverted SCVs. Virulence, determined using keratinocyte invasion and Galleria mellonella pathogenicity assays was significantly (p < 0.05) attenuated in 3/4 SCVs and in the non-SCV triclosan-adapted bacterium. Proteomic analysis revealed elevated FabI in 2/3 SCV and down-regulation in a protein associated with virulence in 1/3 SCV. In summary, attenuated keratinocyte invasion and larval virulence in triclosan-induced SCVs was associated with decreases in growth rate and virulence factor expression. Mutation occurred in fabI, which encodes the main triclosan target in all SCVs and the phenotype was reversed by fatty acid supplementation, demonstrating an association between fatty acid metabolism and triclosan-induced SCV.


Distinct microbiome profiles and biofilms in Leishmania donovani-driven cutaneous leishmaniasis wounds.

  • T D Jayasena Kaluarachchi‎ et al.
  • Scientific reports‎
  • 2021‎

The endemic strain of Leishmania donovani in Sri Lanka causes cutaneous leishmaniasis (CL) rather than more common visceral form. We have visualized biofilms and profiled the microbiome of lesions and unaffected skin in thirty-nine CL patients. Twenty-four lesions (61.5%) were biofilm-positive according to fluorescence in situ hybridization. Biopsies of biofilm-positive lesions were dominated by Pseudomonas, class Bacilli and Enterobacteriaceae and distinguished by significantly lower community evenness. Higher relative abundance of a class Bacilli OTU was detected in wound swabs versus contralateral skin. Wound swabs and biopsies had significantly distinct microbiome profiles and lower diversity compared to unaffected skin. Greater abundances of potentially pathogenic organisms were observed in wet ulcers, lesions with high parasite loads and large wounds. In summary, more than half of L. donovani associated CL wounds harboured biofilms and the wounds exhibited a distinct, less diverse, microbiome than unaffected skin.


Anti-biofilm effects and healing promotion by silver oxynitrate-based dressings.

  • Christopher Doherty‎ et al.
  • Scientific reports‎
  • 2023‎

Microbial growth within a wound often manifests as biofilms, which can prevent healing and is difficult to eradicate. Novel silver dressings claim to combat wound infection, but anti-biofilm efficacy and effects on healing independent of infection are often unclear. Using in vitro and in vivo S. aureus and P. aeruginosa biofilm models, we report the efficacy of a dressing which produces Ag1+ ions; an Ag1+ dressing containing ethylenediaminetetraacetic acid and benzethonium chloride (Ag1+/EDTA/BC), and a dressing containing silver oxynitrate (Ag Oxysalts) which produces Ag1+, Ag2+ and Ag3+ ions, against wound biofilms, and their effects on healing. Ag1+ dressings had minimal effect on in vitro and murine (C57BL/6j) wound biofilms. In contrast, Ag Oxysalts and Ag1+/EDTA/BC dressings significantly reduced viable bacteria within in vitro biofilms and demonstrated a visible reduction in bacteria and EPS components within murine wound biofilms. The dressings had different effects on the healing of biofilm-infected and uninfected wounds, with Ag Oxysalts dressings having a greater beneficial effect on re-epithelialisation, wound size and inflammation than the control treatment and the other silver dressings. The different physicochemical properties of the silver dressings result in varied effects on wound biofilms and healing which should be considered when selecting dressings to treat biofilm-infected wounds.


Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

  • Walaa Mohammedsaeed‎ et al.
  • Scientific reports‎
  • 2015‎

A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.


Investigating the microbial and metalloprotease sequestration properties of superabsorbent wound dressings.

  • Gurdeep Singh‎ et al.
  • Scientific reports‎
  • 2022‎

Exudate production is a natural part of the wound healing process, however levels of exudate need to be appropriately managed to maintain a moist wound environment which supports healing. An overly-exuding wound creates an environment favourable to bacterial growth. In recent years, a significant increase in commercially available superabsorbent dressings have become available which claim to absorb and retain excess exudate and its components. However, the effectiveness of these dressings in sequestering and retaining bacteria and host-derived proteins has not been compared. We have therefore investigated several superabsorbent dressings for their ability to absorb and retain bacteria (Staphylococcus aureus and Pseudomonas aeruginosa), their impact on bacterial viability, and their ability to sequester matrix metalloproteinases (MMP)-2 and 9 over 7 days. Whilst all dressings could sequester bacteria, some dressings internalised bacteria more effectively. There was considerable variation in bacterial viability within the dressings' core, as well as differences in bacterial retention. Some dressings effectively internalised and retained bacteria over time, whereas other dressings retained significantly less. These differences were reflected visually using scanning electron microscopy. Most dressings fully sequestered MMP-2 and 9. These data illustrate differences in the ability of superabsorbent dressings to absorb and retain exudate and its components.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: