Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

let-7 MicroRNAs Regulate Microglial Function and Suppress Glioma Growth through Toll-Like Receptor 7.

  • Alice Buonfiglioli‎ et al.
  • Cell reports‎
  • 2019‎

Microglia express Toll-like receptors (TLRs) that sense pathogen- and host-derived factors, including single-stranded RNA. In the brain, let-7 microRNA (miRNA) family members are abundantly expressed, and some have recently been shown to serve as TLR7 ligands. We investigated whether let-7 miRNA family members differentially control microglia biology in health and disease. We found that a subset of let-7 miRNA family members function as signaling molecules to induce microglial release of inflammatory cytokines, modulate antigen presentation, and attenuate cell migration in a TLR7-dependent manner. The capability of the let-7 miRNAs to control microglial function is sequence specific, mapping to a let-7 UUGU motif. In human and murine glioblastoma/glioma, let-7 miRNAs are differentially expressed and reduce murine GL261 glioma growth in the same sequence-specific fashion through microglial TLR7. Taken together, these data establish let-7 miRNAs as key TLR7 signaling activators that serve to regulate the diverse functions of microglia in health and glioma.


Targeting Cbx3/HP1γ Induces LEF-1 and IL-21R to Promote Tumor-Infiltrating CD8 T-Cell Persistence.

  • Phuong T Le‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Immune checkpoint blockade (ICB) relieves CD8+ T-cell exhaustion in most mutated tumors, and TCF-1 is implicated in converting progenitor exhausted cells to functional effector cells. However, identifying mechanisms that can prevent functional senescence and potentiate CD8+ T-cell persistence for ICB non-responsive and resistant tumors remains elusive. We demonstrate that targeting Cbx3/HP1γ in CD8+ T cells augments transcription initiation and chromatin remodeling leading to increased transcriptional activity at Lef1 and Il21r. LEF-1 and IL-21R are necessary for Cbx3/HP1γ-deficient CD8+ effector T cells to persist and control ovarian cancer, melanoma, and neuroblastoma in preclinical models. The enhanced persistence of Cbx3/HP1γ-deficient CD8+ T cells facilitates remodeling of the tumor chemokine/receptor landscape ensuring their optimal invasion at the expense of CD4+ Tregs. Thus, CD8+ T cells heightened effector function consequent to Cbx3/HP1γ deficiency may be distinct from functional reactivation by ICB, implicating Cbx3/HP1γ as a viable cancer T-cell-based therapy target for ICB resistant, non-responsive solid tumors.


Polarity Acquisition in Cortical Neurons Is Driven by Synergistic Action of Sox9-Regulated Wwp1 and Wwp2 E3 Ubiquitin Ligases and Intronic miR-140.

  • Mateusz C Ambrozkiewicz‎ et al.
  • Neuron‎
  • 2018‎

The establishment of axon-dendrite polarity is fundamental for radial migration of neurons during cortex development of mammals. We demonstrate that the E3 ubiquitin ligases WW-Containing Proteins 1 and 2 (Wwp1 and Wwp2) are indispensable for proper polarization of developing neurons. We show that knockout of Wwp1 and Wwp2 results in defects in axon-dendrite polarity in pyramidal neurons, and their aberrant laminar cortical distribution. Knockout of miR-140, encoded in Wwp2 intron, engenders phenotypic changes analogous to those upon Wwp1 and Wwp2 deletion. Intriguingly, transcription of the Wwp1 and Wwp2/miR-140 loci in neurons is induced by the transcription factor Sox9. Finally, we provide evidence that miR-140 supervises the establishment of axon-dendrite polarity through repression of Fyn kinase mRNA. Our data delineate a novel regulatory pathway that involves Sox9-[Wwp1/Wwp2/miR-140]-Fyn required for axon specification, acquisition of pyramidal morphology, and proper laminar distribution of cortical neurons.


CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development.

  • Sami Zaqout‎ et al.
  • Stem cell reports‎
  • 2017‎

Gene products linked to microcephaly have been studied foremost for their role in brain development, while their function in the development of other organs has been largely neglected. Here, we report the critical role of Cdk5rap2 in maintaining the germ cell pool during embryonic development. We highlight that infertility in Cdk5rap2 mutant mice is secondary to a lack of spermatogenic cells in adult mice as a result of an early developmental defect in the germ cells through mitotic delay, prolonged cell cycle, and apoptosis.


Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy.

  • Elena G Varlamova‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.


Srsf1 and Elavl1 act antagonistically on neuronal fate choice in the developing neocortex by controlling TrkC receptor isoform expression.

  • A Ioana Weber‎ et al.
  • Nucleic acids research‎
  • 2023‎

The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo.


Satb2Cre/+ mouse as a tool to investigate cell fate determination in the developing neocortex.

  • Mateusz Cyryl Ambrozkiewicz‎ et al.
  • Journal of neuroscience methods‎
  • 2017‎

Generation of different neuronal subtypes during neocortical development is the most important step in the establishment of cortical cytoarchitecture. The transcription factor Satb2 is expressed in neocortical projection neurons that send their axons intracortically as opposed to Satb2-negative neurons that preferentially project to subcortical targets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: