Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 387 papers

Memantine attenuates the increase in striatal preproenkephalin mRNA expression and development of haloperidol-induced persistent oral dyskinesias in rats.

  • Ole A Andreassen‎ et al.
  • Brain research‎
  • 2003‎

Tardive dyskinesia (TD) is a serious motor side effect of long-term neuroleptic treatment that may persist after drug withdrawal. Alterations in striatal enkephalinergic neurons due to excessive glutamatergic activity is a possible pathogenetic mechanism. We studied the effect of the NMDA antagonist memantine in a rat model of TD, in which vacuous chewing movements (VCM) were induced by 20 weeks of haloperidol administration. The striatal density of preproenkephalin mRNA was measured and the number of neurons estimated. Haloperidol induced persistent VCM that was associated with increased striatal expression of preproenkephalin mRNA. Memantine inhibited the development of haloperidol-induced persistent VCM and attenuated the increase in preproenkephalin mRNA expression. This suggests that glutamate-mediated up-regulation of striatal enkephalin plays a role in the development of haloperidol-induced persistent oral dyskinesias.


Large-scale genomics unveil polygenic architecture of human cortical surface area.

  • Chi-Hua Chen‎ et al.
  • Nature communications‎
  • 2015‎

Little is known about how genetic variation contributes to neuroanatomical variability, and whether particular genomic regions comprising genes or evolutionarily conserved elements are enriched for effects that influence brain morphology. Here, we examine brain imaging and single-nucleotide polymorphisms (SNPs) data from ∼2,700 individuals. We show that a substantial proportion of variation in cortical surface area is explained by additive effects of SNPs dispersed throughout the genome, with a larger heritable effect for visual and auditory sensory and insular cortices (h(2)∼0.45). Genome-wide SNPs collectively account for, on average, about half of twin heritability across cortical regions (N=466 twins). We find enriched genetic effects in or near genes. We also observe that SNPs in evolutionarily more conserved regions contributed significantly to the heritability of cortical surface area, particularly, for medial and temporal cortical regions. SNPs in less conserved regions contributed more to occipital and dorsolateral prefrontal cortices.


The human amygdala encodes value and space during decision making.

  • Olga Therese Ousdal‎ et al.
  • NeuroImage‎
  • 2014‎

Valuable stimuli are invariably localized in space. While our knowledge regarding the neural networks supporting value assignment and comparisons is considerable, we lack a basic understanding of how the human brain integrates motivational and spatial information. The amygdala is a key structure for learning and maintaining the value of sensory stimuli and a recent non-human primate study provided initial evidence that it also acts to integrate value with spatial location, a question we address here in a human setting. We measured haemodynamic responses (fMRI) in amygdala while manipulating the value and spatial configuration of stimuli in a simple stimulus-reward task. Subjects responded significantly faster and showed greater amygdala activation when a reward was dependent on a spatial specific response, compared to when a reward required less spatial specificity. Supplemental analysis supported this spatial specificity by demonstrating that the pattern of amygdala activity varied based on whether subjects responded to a motivational target presented in the ipsilateral or contralateral visual space. Our data show that the human amygdala integrates information about space and value, an integration of likely importance for assigning cognitive resources towards highly valuable stimuli in our environment.


Contribution of oxytocin receptor polymorphisms to amygdala activation in schizophrenia spectrum disorders.

  • Marit Haram‎ et al.
  • BJPsych open‎
  • 2016‎

Oxytocin has been proposed to mediate amygdala dysfunction associated with altered emotion processing in schizophrenia, but the contribution of oxytocin pathway genes is yet to be investigated.


Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.

  • Tobias Kaufmann‎ et al.
  • NeuroImage‎
  • 2017‎

An abundance of experimental studies have motivated a range of models concerning the cognitive underpinnings of severe mental disorders, yet the conception that cognitive and brain dysfunction is confined to specific cognitive domains and contexts has limited ecological validity. Schizophrenia and bipolar spectrum disorders have been conceptualized as disorders of brain connectivity; yet little is known about the pervasiveness across cognitive tasks.


The impact of oxytocin administration on brain activity: a systematic review and meta-analysis protocol.

  • Daniel S Quintana‎ et al.
  • Systematic reviews‎
  • 2016‎

Converging evidence demonstrates the important role of the neuropeptide hormone oxytocin (OT) in human behaviour and cognition. Intranasal OT administration has been shown to improve several aspects of social communication, such as the theory of mind performance and gaze to the eye region, and reduce anxiety and related negative cognitive appraisals. While this early research has demonstrated the potential for intranasal OT to treat psychiatric illnesses characterized by social impairments, the neurobiological mechanisms are not well known. Researchers have used functional magnetic resonance imaging (fMRI) to examine the neural correlates of OT response; however, results have been variable and moderating factors are poorly understood. The aim of this meta-analysis is to synthesize data examining the impact of intranasal OT administration on neural activity.


Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

  • Sjur Reppe‎ et al.
  • PloS one‎
  • 2015‎

Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.


Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS.

  • Yunpeng Wang‎ et al.
  • PLoS genetics‎
  • 2016‎

Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic ("z-score") of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a "relative enrichment score" for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ≥80% and ≥90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3.


Generalized Laminar Population Analysis (gLPA) for Interpretation of Multielectrode Data from Cortex.

  • Helena T Głąbska‎ et al.
  • Frontiers in neuroinformatics‎
  • 2016‎

Laminar population analysis (LPA) is a method for analysis of electrical data recorded by linear multielectrodes passing through all lamina of cortex. Like principal components analysis (PCA) and independent components analysis (ICA), LPA offers a way to decompose the data into contributions from separate cortical populations. However, instead of using purely mathematical assumptions in the decomposition, LPA is based on physiological constraints, i.e., that the observed LFP (low-frequency part of signal) is driven by action-potential firing as observed in the MUA (multi-unit activity; high-frequency part of the signal). In the presently developed generalized laminar population analysis (gLPA) the set of basis functions accounting for the LFP data is extended compared to the original LPA, thus allowing for a better fit of the model to experimental data. This enhances the risk for overfitting, however, and we therefore tested various versions of gLPA on virtual LFP data in which we knew the ground truth. These synthetic data were generated by biophysical forward-modeling of electrical signals from network activity in the comprehensive, and well-known, thalamocortical network model developed by Traub and coworkers. The results for the Traub model imply that while the laminar components extracted by the original LPA method overall are in fair agreement with the ground-truth laminar components, the results may be improved by use of gLPA method with two (gLPA-2) or even three (gLPA-3) postsynaptic LFP kernels per laminar population.


Neurophysiological Indicators of Residual Cognitive Capacity in the Minimally Conscious State.

  • Solveig L Hauger‎ et al.
  • Behavioural neurology‎
  • 2015‎

The diagnostic usefulness of electrophysiological methods in assessing disorders of consciousness (DoC) remains to be established on an individual patient level, and there is need to determine what constitutes robust experimental paradigm to elicit electrophysiological indices of covert cognitive capacity.


Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking.

  • Dag Alnæs‎ et al.
  • NeuroImage‎
  • 2015‎

Attentive tracking requires sustained object-based attention, rather than passive vigilance or rapid attentional shifts to brief events. Several theories of tracking suggest a mechanism of indexing objects that allows for attentional resources to be directed toward the moving targets. Imaging studies have shown that cortical areas belonging to the dorsal frontoparietal attention network increase BOLD-signal during multiple object tracking (MOT). Among these areas, some studies have assigned IPS a particular role in object indexing, but the neuroimaging evidence has been sparse. In the present study, we tested participants on a continuous version of the MOT task in order to investigate how cortical areas engage in functional networks during attentional tracking. Specifically, we analyzed the data using eigenvector centrality mapping (ECM) analysis, which provides estimates of individual voxels' connectedness with hub-like parts of the functional network. The results obtained using permutation based voxel-wise statistics support the proposed role for the IPS in object indexing as this region displayed increased centrality during tracking as well as increased functional connectivity with both prefrontal and visual perceptual cortices. In contrast, the opposite pattern was observed for the SPL, with decreasing centrality, as well as reduced functional connectivity with the visual and frontal cortices, in agreement with a hypothesized role for SPL in attentional shifts. These findings provide novel evidence that IPS and SPL serve different functional roles during MOT, while at the same time being highly engaged during tracking as measured by BOLD-signal changes.


Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment.

  • Vidar M Steen‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2017‎

Schizophrenia is a serious psychotic disorder, with disabling symptoms and markedly reduced life expectancy. The onset is usually in late adolescence or early adulthood, which in time overlaps with the maturation of the brain including the myelination process. Interestingly, there seems to be a link between myelin abnormalities and schizophrenia. The oligodendrocyte-derived myelin membranes in the CNS are highly enriched for lipids (cholesterol, phospholipids and glycosphingolipids), thereby pointing at lipid homeostasis as a relevant target for studying the genetics and pathophysiology of schizophrenia. The biosynthesis of fatty acids and cholesterol is regulated by the sterol regulatory element binding protein (SREBP) transcription factors SREBP1 and SREBP2, which are encoded by the SREBF1 and SREBF2 genes on chromosome 17p11.2 and 22q13.2, respectively. Here we review the evidence for the involvement of SREBF1 and SREBF2 as genetic risk factors in schizophrenia and discuss the role of myelination and SREBP-mediated lipid biosynthesis in the etiology, pathophysiology and drug treatment of schizophrenia.


Conservation of Distinct Genetically-Mediated Human Cortical Pattern.

  • Qian Peng‎ et al.
  • PLoS genetics‎
  • 2016‎

The many subcomponents of the human cortex are known to follow an anatomical pattern and functional relationship that appears to be highly conserved between individuals. This suggests that this pattern and the relationship among cortical regions are important for cortical function and likely shaped by genetic factors, although the degree to which genetic factors contribute to this pattern is unknown. We assessed the genetic relationships among 12 cortical surface areas using brain images and genotype information on 2,364 unrelated individuals, brain images on 466 twin pairs, and transcriptome data on 6 postmortem brains in order to determine whether a consistent and biologically meaningful pattern could be identified from these very different data sets. We find that the patterns revealed by each data set are highly consistent (p<10-3), and are biologically meaningful on several fronts. For example, close genetic relationships are seen in cortical regions within the same lobes and, the frontal lobe, a region showing great evolutionary expansion and functional complexity, has the most distant genetic relationship with other lobes. The frontal lobe also exhibits the most distinct expression pattern relative to the other regions, implicating a number of genes with known functions mediating immune and related processes. Our analyses reflect one of the first attempts to provide an assessment of the biological consistency of a genetic phenomenon involving the brain that leverages very different types of data, and therefore is not just statistical replication which purposefully use very similar data sets.


On the estimation of population-specific synaptic currents from laminar multielectrode recordings.

  • Sergey L Gratiy‎ et al.
  • Frontiers in neuroinformatics‎
  • 2011‎

Multielectrode array recordings of extracellular electrical field potentials along the depth axis of the cerebral cortex are gaining popularity as an approach for investigating the activity of cortical neuronal circuits. The low-frequency band of extracellular potential, i.e., the local field potential (LFP), is assumed to reflect synaptic activity and can be used to extract the laminar current source density (CSD) profile. However, physiological interpretation of the CSD profile is uncertain because it does not disambiguate synaptic inputs from passive return currents and does not identify population-specific contributions to the signal. These limitations prevent interpretation of the CSD in terms of synaptic functional connectivity in the columnar microcircuit. Here we present a novel anatomically informed model for decomposing the LFP signal into population-specific contributions and for estimating the corresponding activated synaptic projections. This involves a linear forward model, which predicts the population-specific laminar LFP in response to synaptic inputs applied at different positions along each population and a linear inverse model, which reconstructs laminar profiles of synaptic inputs from laminar LFP data based on the forward model. Assuming spatially smooth synaptic inputs within individual populations, the model decomposes the columnar LFP into population-specific contributions and estimates the corresponding laminar profiles of synaptic input as a function of time. It should be noted that constant synaptic currents at all positions along a neuronal population cannot be reconstructed, as this does not result in a change in extracellular potential. However, constraining the solution using a priori knowledge of the spatial distribution of synaptic connectivity provides the further advantage of estimating the strength of active synaptic projections from the columnar LFP profile thus fully specifying synaptic inputs.


Vitamin D, Folate and the Intracranial Volume in Schizophrenia and Bipolar Disorder and Healthy Controls.

  • Tiril P Gurholt‎ et al.
  • Scientific reports‎
  • 2018‎

Vitamin D and folate deficiency are considered risk factors for schizophrenia and bipolar disorders, but it is unknown how vitamin D and folate influence the growing brain, cranium or the clinical phenotype. Serum vitamin D and folate levels are in part genetically regulated. We investigated whether adult vitamin D and folate levels are associated with the intracranial volume (ICV) under the hypothesis that developmental vitamin D or folate levels influence neurodevelopment and that current levels are associated with ICV. Ninety patients with severe mental disorders and 91 healthy controls underwent 3 T magnetic resonance imaging and serum sampling. Multiple linear regression was used to assess the contribution of serum vitamin D, folate and patient-control status on ICV. We show that vitamin D levels were within lower range for patients and controls (48.8 ± 22.1 nmol/l and 53.4 ± 20.0 nmol/l, respectively). A significant positive association was found between vitamin D and ICV (p = 0.003, r = 0.22), folate was trend-significantly associated with ICV. Folate and vitamin D were significantly associated (p = 0.0001, r = 0.28). There were nonsignificant patient-control differences and no interaction effects. The results suggest that Vitamin D is associated with ICV as detected in the adult. Further studies are warranted for replication and to investigate possible mechanisms and genetic associations.


Oxytocin pathway gene networks in the human brain.

  • Daniel S Quintana‎ et al.
  • Nature communications‎
  • 2019‎

Oxytocin is a neuropeptide involved in animal and human reproductive and social behavior. Three oxytocin signaling genes have been frequently implicated in human social behavior: OXT (structural gene for oxytocin), OXTR (oxytocin receptor), and CD38 (oxytocin secretion). Here, we characterized the distribution of OXT, OXTR, and CD38 mRNA across the human brain by creating voxel-by-voxel volumetric expression maps, and identified putative gene pathway interactions by comparing gene expression patterns across 20,737 genes. Expression of the three selected oxytocin pathway genes was enriched in subcortical and olfactory regions and there was high co-expression with several dopaminergic and muscarinic acetylcholine genes, reflecting an anatomical basis for critical gene pathway interactions. fMRI meta-analysis revealed that the oxytocin pathway gene maps correspond with the processing of anticipatory, appetitive, and aversive cognitive states. The oxytocin signaling system may interact with dopaminergic and muscarinic acetylcholine signaling to modulate cognitive state processes involved in complex human behaviors.


Probing Brain Developmental Patterns of Myelination and Associations With Psychopathology in Youths Using Gray/White Matter Contrast.

  • Linn B Norbom‎ et al.
  • Biological psychiatry‎
  • 2019‎

Cerebral myeloarchitecture shows substantial development across childhood and adolescence, and aberrations in these trajectories are relevant for a range of mental disorders. Differential myelination between intracortical and subjacent white matter can be approximated using signal intensities in T1-weighted magnetic resonance imaging.


Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder.

  • Emanuel Schwarz‎ et al.
  • Translational psychiatry‎
  • 2019‎

Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/ hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.


Pleiotropic effects of schizophrenia-associated genetic variants in neuron firing and cardiac pacemaking revealed by computational modeling.

  • Tuomo Mäki-Marttunen‎ et al.
  • Translational psychiatry‎
  • 2017‎

Schizophrenia patients have an increased risk of cardiac dysfunction. A possible factor underlying this comorbidity are the common variants in the large set of genes that have recently been discovered in genome-wide association studies (GWASs) as risk genes of schizophrenia. Many of these genes control the cell electrogenesis and calcium homeostasis. We applied biophysically detailed models of layer V pyramidal cells and sinoatrial node cells to study the contribution of schizophrenia-associated genes on cellular excitability. By including data from functional genomics literature to simulate the effects of common variants of these genes, we showed that variants of voltage-gated Na+ channel or hyperpolarization-activated cation channel-encoding genes cause qualitatively similar effects on layer V pyramidal cell and sinoatrial node cell excitability. By contrast, variants of Ca2+ channel or transporter-encoding genes mostly have opposite effects on cellular excitability in the two cell types. We also show that the variants may crucially affect the propagation of the cardiac action potential in the sinus node. These results may help explain some of the cardiac comorbidity in schizophrenia, and may facilitate generation of effective antipsychotic medications without cardiac side-effects such as arrhythmia.


Fourteen sequence variants that associate with multiple sclerosis discovered by meta-analysis informed by genetic correlations.

  • Sigurgeir Olafsson‎ et al.
  • NPJ genomic medicine‎
  • 2017‎

A meta-analysis of publicly available summary statistics on multiple sclerosis combined with three Nordic multiple sclerosis cohorts (21,079 cases, 371,198 controls) revealed seven sequence variants associating with multiple sclerosis, not reported previously. Using polygenic risk scores based on public summary statistics of variants outside the major histocompatibility complex region we quantified genetic overlap between common autoimmune diseases in Icelanders and identified disease clusters characterized by autoantibody presence/absence. As multiple sclerosis-polygenic risk scores captures the risk of primary biliary cirrhosis and vice versa (P = 1.6 × 10-7, 4.3 × 10-9) we used primary biliary cirrhosis as a proxy-phenotype for multiple sclerosis, the idea being that variants conferring risk of primary biliary cirrhosis have a prior probability of conferring risk of multiple sclerosis. We tested 255 variants forming the primary biliary cirrhosis-polygenic risk score and found seven multiple sclerosis-associating variants not correlated with any previously established multiple sclerosis variants. Most of the variants discovered are close to or within immune-related genes. One is a low-frequency missense variant in TYK2, another is a missense variant in MTHFR that reduces the function of the encoded enzyme affecting methionine metabolism, reported to be dysregulated in multiple sclerosis brain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: