Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C.

  • Hans Pottel‎ et al.
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association‎
  • 2017‎

We recently published and validated the new serum creatinine (Scr)-based full-age-spectrum equation (FAS crea ) for estimating the glomerular filtration rate (GFR) for healthy and kidney-diseased subjects of all ages. The equation was based on the concept of normalized Scr and shows equivalent to superior prediction performance to the currently recommended equations for children, adolescents, adults and older adults.


Data on the relation between renal biomarkers and measured glomerular filtration rate.

  • Hans Pottel‎ et al.
  • Data in brief‎
  • 2017‎

The data presented in this article are related to the research article entitled "The Diagnostic Value of Rescaled Renal Biomarkers Serum Creatinine and Serum Cystatin C and their Relation with Measured Glomerular Filtration Rate" (Pottel et al. (2017) [1]). Data are presented demonstrating the rationale for the normalization or rescaling of serum cystatin C, equivalent to the rescaling of serum creatinine. Rescaling biomarkers brings them to a notionally common scale with reference interval [0.67-1.33]. This article illustrates the correlation between rescaled biomarkers serum creatinine and serum cystatin C by plotting them in a 2-dimensional graph. The diagnostic value in terms of sensitivity and specificity with measured Glomerular Filtration Rate as the reference method is calculated per age-decade for both rescaled biomarkers. Finally, the interchangeability between detecting impaired kidney function from renal biomarkers and from the Full Age Spectrum FAS-estimating GFR-equation and measured GFR using a fixed and an age-dependent threshold is shown.


Specific populations of urinary extracellular vesicles and proteins differentiate type 1 primary hyperoxaluria patients without and with nephrocalcinosis or kidney stones.

  • Muthuvel Jayachandran‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

Primary hyperoxaluria type 1 (PH1) is associated with nephrocalcinosis (NC) and calcium oxalate (CaOx) kidney stones (KS). Populations of urinary extracellular vesicles (EVs) can reflect kidney pathology. The aim of this study was to determine whether urinary EVs carrying specific biomarkers and proteins differ among PH1 patients with NC, KS or with neither disease process.


Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy.

  • Xiaohui Bian‎ et al.
  • BMJ open diabetes research & care‎
  • 2019‎

Activin A, an inflammatory mediator implicated in cellular senescence-induced adipose tissue dysfunction and profibrotic kidney injury, may become a new target for the treatment of diabetic kidney disease (DKD) and chronic kidney diseases. We tested the hypothesis that human DKD-related injury leads to upregulation of activin A in blood and urine and in a human kidney cell model. We further hypothesized that circulating activin A parallels kidney injury markers in DKD.


The Minnesota attributable risk of kidney donation (MARKD) study: a retrospective cohort study of long-term (> 50 year) outcomes after kidney donation compared to well-matched healthy controls.

  • David M Vock‎ et al.
  • BMC nephrology‎
  • 2023‎

There is uncertainty about the long-term risks of living kidney donation. Well-designed studies with controls well-matched on risk factors for kidney disease are needed to understand the attributable risks of kidney donation.


Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys.

  • Anne E Turco‎ et al.
  • Journal of extracellular vesicles‎
  • 2016‎

Non-invasive tests to identify age and early disease-associated pathology within the kidney are needed. Specific populations of urinary extracellular vesicles (EVs) could potentially be used for such a diagnostic test. Random urine samples were obtained from age- and sex-stratified living kidney donors before kidney donation. A biopsy of the donor kidney was obtained at the time of transplantation to identify nephron hypertrophy (larger glomerular volume, cortex per glomerulus and mean profile tubular area) and nephrosclerosis (% fibrosis, % glomerulosclerosis and arteriosclerosis). Renal parenchymal-derived EVs in cell-free urine were quantified by digital flow cytometry. The relationship between these EV populations and structural pathology on the kidney biopsy was assessed. Clinical characteristics of the kidney donors (n=138, age range: 20-70 years, 50% women) were within the normative range. Overall, urine from women contained more EVs than that from men. The number of exosomes, juxtaglomerular cells and podocyte marker-positive EVs decreased (p<0.05) with increasing age. There were fewer total EVs as well as EVs positive for mesangial cell, parietal cell, descending limb of Henle's loop (simple squamous epithelium), collecting tubule-intercalated cell and monocyte chemoattractant protein-1 markers (p<0.05) in persons with nephron hypertrophy. The number of EVs positive for intercellular adhesion molecule-1, juxtaglomerular cell, podocyte, parietal cell, proximal tubular epithelial cell, distal tubular epithelial cell and collecting duct cells were fewer (p<0.05) in persons with nephrosclerosis. EVs carrying markers of cells from the renal pelvis epithelium did not associate with any indices of nephron hypertrophy or nephrosclerosis. Therefore, specific populations of EVs derived from cells of the glomerulus and nephron associate with underlying kidney structural changes. Further validation of these findings in other cohorts is needed to determine their clinical utility.


Estimation of nephron number in living humans by combining unenhanced computed tomography with biopsy-based stereology.

  • Takaya Sasaki‎ et al.
  • Scientific reports‎
  • 2019‎

Methods for estimating nephron number in a clinical setting may be useful for predicting renal outcomes. This study aimed to establish such a method using unenhanced computed tomography (CT) and biopsy-based stereology. Patients or living kidney donors simultaneously subjected to enhanced and unenhanced CT examinations were randomly assigned to development and validation groups. The enhanced CT-measured arterial phase and the venous phase images of kidneys were regarded as the true values for cortical volume and parenchymal volume, respectively. Linear multiple regression analysis was used to create models for estimating cortical volume using explanatory variables including unenhanced CT-measured parenchymal volume. Nephron number was determined as the product of cortical volume and the glomerular density in biopsies of donors. Five equations for estimating cortical volume were created and verified. In donors, estimated nephron number by unenhanced CT was consistent with that by enhanced CT, with minimal errors in all models (636-655 ± 210-219 vs. 648 ± 224 × 103/kidney). Clinical characteristics combined with parenchymal volume did not improve the equation over parenchymal volume alone. These results support the feasibility of estimating nephron number by a combination of unenhanced CT and biopsy-based stereology, with a possible application for renal disease patients who are often not suitable for contrast media.


Mass Spectrometric Analysis of Urine from COVID-19 Patients for Detection of SARS-CoV-2 Viral Antigen and to Study Host Response.

  • Sandip Chavan‎ et al.
  • Journal of proteome research‎
  • 2021‎

SARS-CoV-2 infection has become a major public health burden and affects many organs including lungs, kidneys, the liver, and the brain. Although the virus is readily detected and diagnosed using nasopharyngeal swabs by reverse transcriptase polymerase chain reaction (RT-PCR), detection of its presence in body fluids is fraught with difficulties. A number of published studies have failed to detect viral RNA by RT-PCR methods in urine. Although microbial identification in clinical microbiology using mass spectrometry is undertaken after culture, here we undertook a mass spectrometry-based approach that employed an enrichment step to capture and detect SARS-CoV-2 nucleocapsid protein directly from urine of COVID-19 patients without any culture. We detected SARS-CoV-2 nucleocapsid protein-derived peptides from 13 out of 39 urine samples. Further, a subset of COVID-19 positive and COVID-19 negative urine samples validated by mass spectrometry were used for the quantitative proteomics analysis. Proteins with increased abundance in urine of SARS-CoV-2 positive individuals were enriched in the acute phase response, regulation of complement system, and immune response. Notably, a number of renal proteins such as podocin (NPHS2), an amino acid transporter (SLC36A2), and sodium/glucose cotransporter 5 (SLC5A10), which are intimately involved in normal kidney function, were decreased in the urine of COVID-19 patients. Overall, the detection of viral antigens in urine using mass spectrometry and alterations of the urinary proteome could provide insights into understanding the pathogenesis of COVID-19.


Clinician perspectives on inpatient cystatin C utilization: A qualitative case study at Mayo Clinic.

  • James Roland Markos‎ et al.
  • PloS one‎
  • 2020‎

Serum creatinine (SCr) testing has been the mainstay of kidney function assessment for decades despite known limitations. Cystatin C (CysC) is an alternative biomarker that is generally less affected than SCr by pertinent non-renal factors in hospitalized patients, such as muscle mass. Despite its potential advantages, the adoption of CysC for inpatient care is not widespread. At one hospital with CysC testing, we demonstrated a significant rise in non-protocolized use over the last decade. This study uses qualitative methods to provide the first report of how clinicians understand, approach, and apply CysC testing in inpatient care.


Prediction of measured GFR after living kidney donation from pre-donation parameters.

  • Marco van Londen‎ et al.
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association‎
  • 2023‎

One of the challenges in living kidney donor screening is to estimate remaining kidney function after donation. Here we developed a new model to predict post-donation measured glomerular filtration rate (mGFR) from pre-donation serum creatinine, age and sex.


External Validation of a Novel Multimarker GFR Estimating Equation.

  • Maria Clarissa Tio‎ et al.
  • Kidney360‎
  • 2023‎

Using multiple markers may improve GFR estimation especially in settings where creatinine and cystatin C are known to be limited. Panel eGFR is a novel multimarker eGFR equation consisting of age, sex, cystatin C, and nuclear magnetic resonance–measured creatinine, valine, and myo-inositol. eGFR-Cr and eGFR-Cr-CysC may underestimate measured GFR, while panel eGFR was unbiased among younger Black male individuals.


Extracellular vesicles in urine of women with but not without kidney stones manifest patterns similar to men: a case control study.

  • Muthuvel Jayachandran‎ et al.
  • Biology of sex differences‎
  • 2015‎

The lifetime incidence of kidney stones is about two times greater in men compared to women. Extracellular vesicles (EVs) shed from activated cells are present in the urine and may reflect or even mediate renal physiology and/or pathology. This study was designed to standardize methodology to characterize urinary EVs by digital flow cytometry and to identify possible sex differences in EVs in persons with and without their first symptomatic kidney stones.


Prospective evaluation of high-dose methotrexate pharmacokinetics in adult patients with lymphoma using novel determinants of kidney function.

  • Jason N Barreto‎ et al.
  • Clinical and translational science‎
  • 2022‎

High-dose methotrexate (HDMTX) pharmacokinetics (PKs), including the best estimated glomerular filtration rate (eGFR) equation that reflects methotrexate (MTX) clearance, requires investigation. This prospective, observational, single-center study evaluated adult patients with lymphoma treated with HDMTX. Samples were collected at predefined time points up to 96 h postinfusion. MTX and 7-hydroxy-MTX PKs were estimated by standard noncompartmental analysis. Linear regression determined which serum creatinine- or cystatin C-based eGFR equation best predicted MTX clearance. The 80 included patients had a median (interquartile range [IQR]) age of 68.6 years (IQR 59.2-75.6), 54 (67.5%) were men, and 74 (92.5%) were White. The median (IQR) dose of MTX was 7.6 (IQR 4.8-11.3) grams. Median clearance was similar across three dosing levels at 4.5-5.6 L/h and was consistent with linear PKs. Liver function, weight, age, sex, concomitant chemotherapy, and number of previous MTX doses did not impact clearance. MTX area under the curve (AUC) values varied over a fourfold range and appeared to increase in proportion to the dose. The eGFRcys (ml/min) equation most closely correlated with MTX clearance in both the entire cohort and after excluding outlier MTX clearance values (r = 0.31 and 0.51, respectively). HDMTX as a 4-h infusion displays high interpatient pharmacokinetic variability. Population PK modeling to optimize MTX AUC attainment requires further evaluation. The cystatin C-based eGFR equation most closely estimated MTX clearance and should be investigated for dosing and monitoring in adults requiring MTX as part of lymphoma management.


Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification.

  • Michael P Linnes‎ et al.
  • Kidney international‎
  • 2013‎

Interstitial Randall's plaques and collecting duct plugs are distinct forms of renal calcification thought to provide sites for stone retention within the kidney. Here we assessed kidney stone precursor lesions in a random cohort of stone formers undergoing percutaneous nephrolithotomy. Each accessible papilla was endoscopically mapped following stone removal. The percent papillary surface area covered by plaque and plug were digitally measured using image analysis software. Stone composition was determined by micro-computed tomography and infrared analysis. A representative papillary tip was biopsied. The 24-h urine collections were used to measure supersaturation and crystal growth inhibition. The vast majority (99%) of stone formers had Randall's plaque on at least 1 papilla, while significant tubular plugging (over 1% of surface area) was present in about one-fifth of patients. Among calcium oxalate stone formers the amount of Randall's plaque correlated with higher urinary citrate levels. Tubular plugging correlated positively with pH and brushite supersaturation but negatively with citrate excretion. Lower urinary crystal growth inhibition predicted the presence of tubular plugging but not plaque. Thus, tubular plugging may be more common than previously recognized among patients with all types of stones, including some with idiopathic calcium oxalate stones.


Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair.

  • LaTonya J Hickson‎ et al.
  • Diabetes‎
  • 2021‎

Mesenchymal stem/stromal cells (MSCs) facilitate repair in experimental diabetic kidney disease (DKD). However, the hyperglycemic and uremic milieu may diminish regenerative capacity of patient-derived therapy. We hypothesized that DKD reduces human MSC paracrine function. Adipose-derived MSC from 38 participants with DKD and 16 control subjects were assessed for cell surface markers, trilineage differentiation, RNA sequencing (RNA-seq), in vitro function (coculture or conditioned medium experiments with T cells and human kidney cells [HK-2]), secretome profile, and cellular senescence abundance. The direction of association between MSC function and patient characteristics were also tested. RNA-seq analysis identified 353 differentially expressed genes and downregulation of several immunomodulatory genes/pathways in DKD-MSC versus Control-MSC. DKD-MSC phenotype, differentiation, and tube formation capacity were preserved, but migration was reduced. DKD-MSC with and without interferon-γ priming inhibited T-cell proliferation greater than Control-MSC. DKD-MSC medium contained higher levels of anti-inflammatory cytokines (indoleamine 2,3-deoxygenase 1 and prostaglandin-E2) and prorepair factors (hepatocyte growth factor and stromal cell-derived factor 1) but lower IL-6 versus control-MSC medium. DKD-MSC medium protected high glucose plus transforming growth factor-β-exposed HK-2 cells by reducing apoptotic, fibrotic, and inflammatory marker expression. Few DKD-MSC functions were affected by patient characteristics, including age, sex, BMI, hemoglobin A1c, kidney function, and urine albumin excretion. However, senescence-associated β-galactosidase activity was lower in DKD-MSC from participants on metformin therapy. Therefore, while DKD altered the transcriptome and migratory function of culture-expanded MSCs, DKD-MSC functionality, trophic factor secretion, and immunomodulatory activities contributing to repair remained intact. These observations support testing of patient-derived MSC therapy and may inform preconditioning regimens in DKD clinical trials.


Effect of Dataset Size and Medical Image Modality on Convolutional Neural Network Model Performance for Automated Segmentation: A CT and MR Renal Tumor Imaging Study.

  • Harrison C Gottlich‎ et al.
  • Journal of digital imaging‎
  • 2023‎

The aim of this study is to investigate the use of an exponential-plateau model to determine the required training dataset size that yields the maximum medical image segmentation performance. CT and MR images of patients with renal tumors acquired between 1997 and 2017 were retrospectively collected from our nephrectomy registry. Modality-based datasets of 50, 100, 150, 200, 250, and 300 images were assembled to train models with an 80-20 training-validation split evaluated against 50 randomly held out test set images. A third experiment using the KiTS21 dataset was also used to explore the effects of different model architectures. Exponential-plateau models were used to establish the relationship of dataset size to model generalizability performance. For segmenting non-neoplastic kidney regions on CT and MR imaging, our model yielded test Dice score plateaus of [Formula: see text] and [Formula: see text] with the number of training-validation images needed to reach the plateaus of 54 and 122, respectively. For segmenting CT and MR tumor regions, we modeled a test Dice score plateau of [Formula: see text] and [Formula: see text], with 125 and 389 training-validation images needed to reach the plateaus. For the KiTS21 dataset, the best Dice score plateaus for nn-UNet 2D and 3D architectures were [Formula: see text] and [Formula: see text] with number to reach performance plateau of 177 and 440. Our research validates that differing imaging modalities, target structures, and model architectures all affect the amount of training images required to reach a performance plateau. The modeling approach we developed will help future researchers determine for their experiments when additional training-validation images will likely not further improve model performance.


Comprehensive Acute Kidney Injury Survivor Care: Protocol for the Randomized Acute Kidney Injury in Care Transitions Pilot Trial.

  • Heather P May‎ et al.
  • JMIR research protocols‎
  • 2023‎

Innovative care models are needed to address gaps in kidney care follow-up among acute kidney injury (AKI) survivors. We developed the multidisciplinary AKI in Care Transitions (ACT) program, which embeds post-AKI care in patients' primary care clinic.


Provider perspectives on beta-lactam therapeutic drug monitoring programs in the critically ill: a protocol for a multicenter mixed-methods study.

  • Erin F Barreto‎ et al.
  • Implementation science communications‎
  • 2021‎

Beta-lactams (i.e., penicillins, cephalosporins, carbapenems, monobactams) are the most widely used class of antibiotics in critically ill patients. There is substantial interpatient variability in beta-lactam pharmacokinetics which renders their effectiveness and safety largely unpredictable. One strategy to ensure achievement of therapeutic concentrations is drug level testing ("therapeutic drug monitoring"; TDM). While studies have suggested promise with beta-lactam TDM, it is not yet widely available or implemented. This protocol presents a mixed-methods study designed to examine healthcare practitioners' perspectives on the use and implementation of beta-lactam TDM in the critically ill.


The diagnostic value of rescaled renal biomarkers serum creatinine and serum cystatin C and their relation with measured glomerular filtration rate.

  • Hans Pottel‎ et al.
  • Clinica chimica acta; international journal of clinical chemistry‎
  • 2017‎

Serum creatinine (Scr) is the major contributing variable in glomerular filtration rate (GFR) estimating equations. Serum cystatin C (ScysC) based GFR estimating (eGFR)-equations have also been developed. The present study investigates the relation between 'rescaled' levels of these renal biomarkers (with reference interval of [0.67-1.33]) and measured GFR (mGFR).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: