Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID.

  • Sun Kim‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2016‎

BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/.


Integration of macromolecular complex data into the Saccharomyces Genome Database.

  • Edith D Wong‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2019‎

Proteins seldom function individually. Instead, they interact with other proteins or nucleic acids to form stable macromolecular complexes that play key roles in important cellular processes and pathways. One of the goals of Saccharomyces Genome Database (SGD; www.yeastgenome.org) is to provide a complete picture of budding yeast biological processes. To this end, we have collaborated with the Molecular Interactions team that provides the Complex Portal database at EMBL-EBI to manually curate the complete yeast complexome. These data, from a total of 589 complexes, were previously available only in SGD's YeastMine data warehouse (yeastmine.yeastgenome.org) and the Complex Portal (www.ebi.ac.uk/complexportal). We have now incorporated these macromolecular complex data into the SGD core database and designed complex-specific reports to make these data easily available to researchers. These web pages contain referenced summaries focused on the composition and function of individual complexes. In addition, detailed information about how subunits interact within the complex, their stoichiometry and the physical structure are displayed when such information is available. Finally, we generate network diagrams displaying subunits and Gene Ontology annotations that are shared between complexes. Information on macromolecular complexes will continue to be updated in collaboration with the Complex Portal team and curated as more data become available.


The BioGRID interaction database: 2017 update.

  • Andrew Chatr-Aryamontri‎ et al.
  • Nucleic acids research‎
  • 2017‎

The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical-protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases.


The BioC-BioGRID corpus: full text articles annotated for curation of protein-protein and genetic interactions.

  • Rezarta Islamaj Dogan‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2017‎

A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein-protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future uses of the BioC-BioGRID corpus are detailed in this report.Database URL: http://bioc.sourceforge.net/BioC-BioGRID.html.


Broadening the horizon--level 2.5 of the HUPO-PSI format for molecular interactions.

  • Samuel Kerrien‎ et al.
  • BMC biology‎
  • 2007‎

Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions.


CancerGeneNet: linking driver genes to cancer hallmarks.

  • Marta Iannuccelli‎ et al.
  • Nucleic acids research‎
  • 2020‎

CancerGeneNet (https://signor.uniroma2.it/CancerGeneNet/) is a resource that links genes that are frequently mutated in cancers to cancer phenotypes. The resource takes advantage of a curation effort aimed at embedding a large fraction of the gene products that are found altered in cancer cells into a network of causal protein relationships. Graph algorithms, in turn, allow to infer likely paths of causal interactions linking cancer associated genes to cancer phenotypes thus offering a rational framework for the design of strategies to revert disease phenotypes. CancerGeneNet bridges two interaction layers by connecting proteins whose activities are affected by cancer drivers to proteins that impact on the 'hallmarks of cancer'. In addition, CancerGeneNet annotates curated pathways that are relevant to rationalize the pathological consequences of cancer driver mutations in selected common cancers and 'MiniPathways' illustrating regulatory circuits that are frequently altered in different cancers.


SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update.

  • Luana Licata‎ et al.
  • Nucleic acids research‎
  • 2020‎

The SIGnaling Network Open Resource 2.0 (SIGNOR 2.0) is a public repository that stores signaling information as binary causal relationships between biological entities. The captured information is represented graphically as a signed directed graph. Each signaling relationship is associated to an effect (up/down-regulation) and to the mechanism (e.g. binding, phosphorylation, transcriptional activation, etc.) causing the up/down-regulation of the target entity. Since its first release, SIGNOR has undergone a significant content increase and the number of annotated causal interactions have almost doubled. SIGNOR 2.0 now stores almost 23 000 manually-annotated causal relationships between proteins and other biologically relevant entities: chemicals, phenotypes, complexes, etc. We describe here significant changes in curation policy and a new confidence score, which is assigned to each interaction. We have also improved the compliance to the FAIR data principles by providing (i) SIGNOR stable identifiers, (ii) programmatic access through REST APIs, (iii) bioschemas and (iv) downloadable data in standard-compliant formats, such as PSI-MI CausalTAB and GMT. The data are freely accessible and downloadable at https://signor.uniroma2.it/.


Linking entries in protein interaction database to structured text: the FEBS Letters experiment.

  • Arnaud Ceol‎ et al.
  • FEBS letters‎
  • 2008‎

The corpus of the scientific literature has reached such size that a lot of useful data, dispersed throughout millions different articles, are now hard to recover. For instance, many articles in the biological domain describe relationships between entities (gene, proteins, small molecules, etc.) yet this crucial information cannot be efficiently used because of the difficulties in retrieving it automatically from unstructured text. Databases are striving to capture this valuable information and to organize it in a structured format ready for automatic analysis. However, the current database model, based on manual curation, is not sustainable because the limited support is not compatible with complete and accurate coverage of published information. Several proposals have been put forward to increase the efficiency and accuracy of the curation process. Here we present an experiment, designed by the editorial board of FEBS Letters, aimed at integrating each manuscript with a structured summary precisely reporting, with database identifiers and predefined controlled vocabularies, the protein interactions reported in the manuscript. The authors play an important role in this process as they are requested to provide structured information to be appended, in the form of human-readable paragraphs, at the end of traditional summaries. It is envisaged that the structured text will become an integral part of Medline abstracts. In 6 months time the experience gained with this experiment will form the basis for a community discussion to propose a widely accepted strategy for information storage and retrieval.


The gene regulation knowledge commons: the action area of GREEKC.

  • Martin Kuiper‎ et al.
  • Biochimica et biophysica acta. Gene regulatory mechanisms‎
  • 2022‎

As computational modeling becomes more essential to analyze and understand biological regulatory mechanisms, governance of the many databases and knowledge bases that support this domain is crucial to guarantee reliability and interoperability of resources. To address this, the COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.org) organized nine workshops in a four-year period, starting September 2016. The workshops brought together a wide range of experts from all over the world working on various steps in the knowledge management process that focuses on understanding gene regulatory mechanisms. The discussions between ontologists, curators, text miners, biologists, bioinformaticians, philosophers and computational scientists spawned a host of activities aimed to standardize and update existing knowledge management workflows and involve end-users in the process of designing the Gene Regulation Knowledge Commons (GRKC). Here the GREEKC consortium describes its main achievements in improving this GRKC.


Integrating Patient-Specific Information into Logic Models of Complex Diseases: Application to Acute Myeloid Leukemia.

  • Alessandro Palma‎ et al.
  • Journal of personalized medicine‎
  • 2021‎

High throughput technologies such as deep sequencing and proteomics are increasingly becoming mainstream in clinical practice and support diagnosis and patient stratification. Developing computational models that recapitulate cell physiology and its perturbations in disease is a required step to help with the interpretation of results of high content experiments and to devise personalized treatments. As complete cell-models are difficult to achieve, given limited experimental information and insurmountable computational problems, approximate approaches should be considered. We present here a general approach to modeling complex diseases by embedding patient-specific genomics data into actionable logic models that take into account prior knowledge. We apply the strategy to acute myeloid leukemia (AML) and assemble a network of logical relationships linking most of the genes that are found frequently mutated in AML patients. We derive Boolean models from this network and we show that by priming the model with genomic data we can infer relevant patient-specific clinical features. Here we propose that the integration of literature-derived causal networks with patient-specific data should be explored to help bedside decisions.


DISNOR: a disease network open resource.

  • Prisca Lo Surdo‎ et al.
  • Nucleic acids research‎
  • 2018‎

DISNOR is a new resource that aims at exploiting the explosion of data on the identification of disease-associated genes to assemble inferred disease pathways. This may help dissecting the signaling events whose disruption causes the pathological phenotypes and may contribute to build a platform for precision medicine. To this end we combine the gene-disease association (GDA) data annotated in the DisGeNET resource with a new curation effort aimed at populating the SIGNOR database with causal interactions related to disease genes with the highest possible coverage. DISNOR can be freely accessed at http://DISNOR.uniroma2.it/ where >3700 disease-networks, linking ∼2600 disease genes, can be explored. For each disease curated in DisGeNET, DISNOR links disease genes by manually annotated causal relationships and offers an intuitive visualization of the inferred 'patho-pathways' at different complexity levels. User-defined gene lists are also accepted in the query pipeline. In addition, for each list of query genes-either annotated in DisGeNET or user-defined-DISNOR performs a gene set enrichment analysis on KEGG-defined pathways or on the lists of proteins associated with the inferred disease pathways. This function offers additional information on disease-associated cellular pathways and disease similarity.


The landscape of microRNA interaction annotation: analysis of three rare disorders as a case study.

  • Panni Simona‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2023‎

In recent years, a huge amount of data on ncRNA interactions has been described in scientific papers and databases. Although considerable effort has been made to annotate the available knowledge in public repositories, there are still significant discrepancies in how different resources capture and interpret data on ncRNA functional and physical associations. In the present paper, we present a collection of microRNA-mRNA interactions annotated from the scientific literature following recognized standard criteria and focused on microRNAs, which regulate genes associated with rare diseases as a case study. The list of protein-coding genes with a known role in specific rare diseases was retrieved from the Genome England PanelApp, and associated microRNA-mRNA interactions were annotated in the IntAct database and compared with other datasets. RNAcentral identifiers were used for unambiguous, stable identification of ncRNAs. The information about the interaction was enhanced by a detailed description of the cell types and experimental conditions, providing a computer-interpretable summary of the published data, integrated with the huge amount of protein interactions already gathered in the database. Furthermore, for each interaction, the binding sites of the microRNA are precisely mapped on a well-defined mRNA transcript of the target gene. This information is crucial to conceive and design optimal microRNA mimics or inhibitors to interfere in vivo with a deregulated process. As these approaches become more feasible, high-quality, reliable networks of microRNA interactions are needed to help, for instance, in the selection of the best target to be inhibited and to predict potential secondary off-target effects. Database URL https://www.ebi.ac.uk/intact.


The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text.

  • Martin Krallinger‎ et al.
  • BMC bioinformatics‎
  • 2011‎

Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.


Text mining for the biocuration workflow.

  • Lynette Hirschman‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2012‎

Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on 'Text Mining for the BioCuration Workflow' at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.


The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases.

  • Sandra Orchard‎ et al.
  • Nucleic acids research‎
  • 2014‎

IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org).


SIGNOR 3.0, the SIGnaling network open resource 3.0: 2022 update.

  • Prisca Lo Surdo‎ et al.
  • Nucleic acids research‎
  • 2023‎

The SIGnaling Network Open Resource (SIGNOR 3.0, https://signor.uniroma2.it) is a public repository that captures causal information and represents it according to an 'activity-flow' model. SIGNOR provides freely-accessible static maps of causal interactions that can be tailored, pruned and refined to build dynamic and predictive models. Each signaling relationship is annotated with an effect (up/down-regulation) and with the mechanism (e.g. binding, phosphorylation, transcriptional activation, etc.) causing the regulation of the target entity. Since its latest release, SIGNOR has undergone a significant upgrade including: (i) a new website that offers an improved user experience and novel advanced search and graph tools; (ii) a significant content growth adding up to a total of approx. 33,000 manually-annotated causal relationships between more than 8900 biological entities; (iii) an increase in the number of manually annotated pathways, currently including pathways deregulated by SARS-CoV-2 infection or involved in neurodevelopment synaptic transmission and metabolism, among others; (iv) additional features such as new model to represent metabolic reactions and a new confidence score assigned to each interaction.


Myo-REG: A Portal for Signaling Interactions in Muscle Regeneration.

  • Alessandro Palma‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Muscle regeneration is a complex process governed by the interplay between several muscle-resident mononuclear cell populations. Following acute or chronic damage these cell populations are activated, communicate via cell-cell interactions and/or paracrine signals, influencing fate decisions via the activation or repression of internal signaling cascades. These are highly dynamic processes, occurring with distinct temporal and spatial kinetics. The main challenge toward a system level description of the muscle regeneration process is the integration of this plethora of inter- and intra-cellular interactions. We integrated the information on muscle regeneration in a web portal. The scientific content annotated in this portal is organized into two information layers representing relationships between different cell types and intracellular signaling-interactions, respectively. The annotation of the pathways governing the response of each cell type to a variety of stimuli/perturbations occurring during muscle regeneration takes advantage of the information stored in the SIGNOR database. Additional curation efforts have been carried out to increase the coverage of molecular interactions underlying muscle regeneration and to annotate cell-cell interactions. To facilitate the access to information on cell and molecular interactions in the context of muscle regeneration, we have developed Myo-REG, a web portal that captures and integrates published information on skeletal muscle regeneration. The muscle-centered resource we provide is one of a kind in the myology field. A friendly interface allows users to explore, approximately 100 cell interactions or to analyze intracellular pathways related to muscle regeneration. Finally, we discuss how data can be extracted from this portal to support in silico modeling experiments.


Analysing the yeast complexome-the Complex Portal rising to the challenge.

  • Birgit H M Meldal‎ et al.
  • Nucleic acids research‎
  • 2021‎

The EMBL-EBI Complex Portal is a knowledgebase of macromolecular complexes providing persistent stable identifiers. Entries are linked to literature evidence and provide details of complex membership, function, structure and complex-specific Gene Ontology annotations. Data are freely available and downloadable in HUPO-PSI community standards and missing entries can be requested for curation. In collaboration with Saccharomyces Genome Database and UniProt, the yeast complexome, a compendium of all known heteromeric assemblies from the model organism Saccharomyces cerevisiae, was curated. This expansion of knowledge and scope has led to a 50% increase in curated complexes compared to the previously published dataset, CYC2008. The yeast complexome is used as a reference resource for the analysis of complexes from large-scale experiments. Our analysis showed that genes coding for proteins in complexes tend to have more genetic interactions, are co-expressed with more genes, are more multifunctional, localize more often in the nucleus, and are more often involved in nucleic acid-related metabolic processes and processes where large machineries are the predominant functional drivers. A comparison to genetic interactions showed that about 40% of expanded co-complex pairs also have genetic interactions, suggesting strong functional links between complex members.


The BioGRID Interaction Database: 2011 update.

  • Chris Stark‎ et al.
  • Nucleic acids research‎
  • 2011‎

The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347,966 interactions (170,162 genetic, 177,804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23,000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48,831 human protein interactions that have been curated from 10,247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions.


Benchmarking of the 2010 BioCreative Challenge III text-mining competition by the BioGRID and MINT interaction databases.

  • Andrew Chatr-Aryamontri‎ et al.
  • BMC bioinformatics‎
  • 2011‎

The vast amount of data published in the primary biomedical literature represents a challenge for the automated extraction and codification of individual data elements. Biological databases that rely solely on manual extraction by expert curators are unable to comprehensively annotate the information dispersed across the entire biomedical literature. The development of efficient tools based on natural language processing (NLP) systems is essential for the selection of relevant publications, identification of data attributes and partially automated annotation. One of the tasks of the Biocreative 2010 Challenge III was devoted to the evaluation of NLP systems developed to identify articles for curation and extraction of protein-protein interaction (PPI) data.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: