Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

NPAS1 represses the generation of specific subtypes of cortical interneurons.

  • Amelia Stanco‎ et al.
  • Neuron‎
  • 2014‎

Little is known about genetic mechanisms that regulate the ratio of cortical excitatory and inhibitory neurons. We show that NPAS1 and NPAS3 transcription factors (TFs) are expressed in progenitor domains of the mouse basal ganglia (subpallium, MGE, and CGE). NPAS1(-/-) mutants had increased proliferation, ERK signaling, and expression of Arx in the MGE and CGE. NPAS1(-/-) mutants also had increased neocortical inhibition (sIPSC and mIPSC) and generated an excess of somatostatin(+) (SST) (MGE-derived) and vasoactive intestinal polypeptide(+) (VIP) (CGE-derived) neocortical interneurons, but had a normal density of parvalbumin(+) (PV) (MGE-derived) interneurons. In contrast, NPAS3(-/-) mutants showed decreased proliferation and ERK signaling in progenitors of the ganglionic eminences and had fewer SST(+) and VIP(+) interneurons. NPAS1 repressed activity of an Arx enhancer, and Arx overexpression resulted in increased proliferation of CGE progenitors. These results provide insights into genetic regulation of cortical interneuron numbers and cortical inhibitory tone.


Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer's disease.

  • Jaymie R Voorhees‎ et al.
  • NPJ aging and mechanisms of disease‎
  • 2019‎

Occupational exposure to organophosphate pesticides, such as chlorpyrifos (CPF), increases the risk of Alzheimer's disease (AD), though the mechanism is unclear. To investigate this, we subjected 4-month-old male and female wild-type (WT) and TgF344-AD rats, a transgenic AD model, to an occupational CPF exposure paradigm that recapitulates biomarkers and behavioral impairments experienced by agricultural workers. Subsequent cognition and neuropathology were analyzed over the next 20 months. CPF exposure caused chronic microglial dysregulation and accelerated neurodegeneration in both males and females. The effect on neurodegeneration was more severe in males, and was also associated with accelerated cognitive impairment. Females did not exhibit accelerated cognitive impairment after CPF exposure, and amyloid deposition and tauopathy were unchanged in both males and females. Microglial dysregulation may mediate the increased risk of AD associated with occupational organophosphate exposure, and future therapies to preserve or restore normal microglia might help prevent AD in genetically vulnerable individuals exposed to CPF or other disease-accelerating environmental agents.


Neuroprotective efficacy of P7C3 compounds in primate hippocampus.

  • Melissa D Bauman‎ et al.
  • Translational psychiatry‎
  • 2018‎

There is a critical need for translating basic science discoveries into new therapeutics for patients suffering from difficult to treat neuropsychiatric and neurodegenerative conditions. Previously, a target-agnostic in vivo screen in mice identified P7C3 aminopropyl carbazole as capable of enhancing the net magnitude of postnatal neurogenesis by protecting young neurons from death. Subsequently, neuroprotective efficacy of P7C3 compounds in a broad spectrum of preclinical rodent models has also been observed. An important next step in translating this work to patients is to determine whether P7C3 compounds exhibit similar efficacy in primates. Adult male rhesus monkeys received daily oral P7C3-A20 or vehicle for 38 weeks. During weeks 2-11, monkeys received weekly injection of 5'-bromo-2-deoxyuridine (BrdU) to label newborn cells, the majority of which would normally die over the following 27 weeks. BrdU+ cells were quantified using unbiased stereology. Separately in mice, the proneurogenic efficacy of P7C3-A20 was compared to that of NSI-189, a proneurogenic drug currently in clinical trials for patients with major depression. Orally-administered P7C3-A20 provided sustained plasma exposure, was well-tolerated, and elevated the survival of hippocampal BrdU+ cells in nonhuman primates without adverse central or peripheral tissue effects. In mice, NSI-189 was shown to be pro-proliferative, and P7C3-A20 elevated the net magnitude of hippocampal neurogenesis to a greater degree than NSI-189 through its distinct mechanism of promoting neuronal survival. This pilot study provides evidence that P7C3-A20 safely protects neurons in nonhuman primates, suggesting that the neuroprotective efficacy of P7C3 compounds is likely to translate to humans as well.


Discovery of a neuroprotective chemical, (S)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine [(-)-P7C3-S243], with improved druglike properties.

  • Jacinth Naidoo‎ et al.
  • Journal of medicinal chemistry‎
  • 2014‎

(-)-P7C3-S243 is a neuroprotective aminopropyl carbazole with improved druglike properties compared with previously reported compounds in the P7C3 class. It protects developing neurons in a mouse model of hippocampal neurogenesis and protects mature neurons within the substantia nigra in a mouse model of Parkinson's disease. A short, enantioselective synthesis provides the neuroprotective agent in optically pure form. It is nontoxic, orally bioavailable, metabolically stable, and able to cross the blood-brain barrier. As such, it represents a valuable lead compound for the development of drugs to treat neurodegenerative diseases and traumatic brain injury.


A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome.

  • Christie M Buchovecky‎ et al.
  • Nature genetics‎
  • 2013‎

Mutations in MECP2, encoding methyl CpG-binding protein 2, cause Rett syndrome, the most severe autism spectrum disorder. Re-expressing Mecp2 in symptomatic Mecp2-null mice markedly improves function and longevity, providing hope that therapeutic intervention is possible in humans. To identify pathways in disease pathology for therapeutic intervention, we carried out a dominant N-ethyl-N-nitrosourea (ENU) mutagenesis suppressor screen in Mecp2-null mice and isolated five suppressors that ameliorate the symptoms of Mecp2 loss. We show that a stop codon mutation in Sqle, encoding squalene epoxidase, a rate-limiting enzyme in cholesterol biosynthesis, underlies suppression in one line. Subsequently, we also show that lipid metabolism is perturbed in the brains and livers of Mecp2-null male mice. Consistently, statin drugs improve systemic perturbations of lipid metabolism, alleviate motor symptoms and confer increased longevity in Mecp2 mutant mice. Our genetic screen therefore points to cholesterol homeostasis as a potential target for the treatment of patients with Rett syndrome.


Discovery of a proneurogenic, neuroprotective chemical.

  • Andrew A Pieper‎ et al.
  • Cell‎
  • 2010‎

An in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties. In vivo studies gave evidence that P7C3 exerts its proneurogenic activity by protecting newborn neurons from apoptosis. Mice missing the gene encoding neuronal PAS domain protein 3 (NPAS3) are devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus. Prolonged administration of P7C3 to npas3(-/-) mice corrected these deficits by normalizing levels of apoptosis of newborn hippocampal neurons. Prolonged administration of P7C3 to aged rats also enhanced neurogenesis in the dentate gyrus, impeded neuron death, and preserved cognitive capacity as a function of terminal aging. PAPERCLIP:


Ketamine/Xylazine-Induced Corneal Damage in Mice.

  • Demelza Koehn‎ et al.
  • PloS one‎
  • 2015‎

We have observed that the commonly used ketamine/xylazine anesthesia mix can induce a focally severe and permanent corneal opacity. The purpose of this study was to establish the clinical and histological features of this deleterious side effect, its sensitivity with respect to age and anesthesia protocol, and approaches for avoiding it.


Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles.

  • Anne-Sophie Wattiez‎ et al.
  • Pain‎
  • 2021‎

Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.


Recombinant adenovirus causes prolonged mobilization of macrophages in the anterior chambers of mice.

  • Kacie J Meyer‎ et al.
  • Molecular vision‎
  • 2021‎

Ocular tissues of mice have been studied in many ways using replication-deficient species C type 5 adenovirus (Ad5) as a tool for manipulating gene expression. Whereas refinements to injection protocols and tropism have led to several advances in targeting cells of interest, there remains a relative lack of information concerning how Ad5 may influence other ocular cell types capable of confounding experimental interpretation. Here, a slit lamp is used to thoroughly photodocument the sequelae of intraocular Ad5 injections over time in mice, with attention to potentially confounding indices of inflammation.


Identification of chronic brain protein changes and protein targets of serum auto-antibodies after blast-mediated traumatic brain injury.

  • Matthew M Harper‎ et al.
  • Heliyon‎
  • 2020‎

In addition to needing acute emergency management, blast-mediated traumatic brain injury (TBI) is also a chronic disorder with delayed-onset symptoms that manifest and progress over time. While the immediate consequences of acute blast injuries are readily apparent, chronic sequelae are harder to recognize. Indeed, the identification of individuals with mild-TBI or TBI-induced symptoms is greatly impaired in large part due to the lack of objective and robust biomarkers. The purpose of this study was to address these need by identifying candidates for serum-based biomarkers of blast TBI, and also to identify unique or differentially regulated protein expression in the thalamus in C57BL/6J mice exposed to blast using high throughput qualitative screens of protein expression. To identify thalamic proteins differentially or uniquely associated with blast exposure, we utilized an antibody-based affinity-capture strategy (referred to as "proteomics-based analysis of depletomes"; PAD) to deplete thalamic lysates from blast-treated mice of endogenous thalamic proteins also found in control mice. Analysis of this "depletome" detected 75 unique proteins, many with associations to the myelin sheath. To identify blast-associated proteins eliciting production of circulating autoantibodies, serum antibodies of blast-treated mice were immobilized, and their immunogens subsequently identified by proteomic analysis of proteins specifically captured following incubation with thalamic lysates (a variant of a strategy referred to as "proteomics-based expression library screening"; PELS). This analysis identified 46 blast-associated immunogenic proteins, including 6 shared in common with the PAD analysis (ALDOA, PHKB, HBA-A1, DPYSL2, SYN1, and CKB). These proteins and their autoantibodies are appropriate for further consideration as biomarkers of blast-mediated TBI.


Biological Correlations and Confounders for Quantification of Retinal Ganglion Cells by Optical Coherence Tomography Based on Studies of Outbred Mice.

  • Adam Hedberg-Buenz‎ et al.
  • Translational vision science & technology‎
  • 2022‎

Despite popularity of optical coherence tomography (OCT) in glaucoma studies, it's unclear how well OCT-derived metrics compare to traditional measures of retinal ganglion cell (RGC) abundance. Here, Diversity Outbred (J:DO) mice are used to directly compare ganglion cell complex (GCC) thickness measured by OCT to metrics of retinal anatomy measured ex vivo with retinal wholemounts and optic nerve histology.


Anterior chamber depth in mice is controlled by several quantitative trait loci.

  • Demelza R Larson‎ et al.
  • PloS one‎
  • 2023‎

Anterior chamber depth (ACD) is a quantitative trait associated with primary angle closure glaucoma (PACG). Although ACD is highly heritable, known genetic variations explain a small fraction of the phenotypic variability. The purpose of this study was to identify additional ACD-influencing loci using strains of mice. Cohorts of 86 N2 and 111 F2 mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10-12 weeks of age, genotyped based on 93 genome-wide SNPs, and subjected to quantitative trait locus (QTL) analysis. In an analysis of ACD among all mice, six loci passed the significance threshold of p = 0.05 and persisted after multiple regression analysis. These were on chromosomes 6, 7, 11, 12, 15 and 17 (named Acdq6, Acdq7, Acdq11, Acdq12, Acdq15, and Acdq17, respectively). Our findings demonstrate a quantitative multi-genic pattern of ACD inheritance in mice and identify six previously unrecognized ACD-influencing loci. We have taken a unique approach to studying the anterior chamber depth phenotype by using mice as genetic tool to examine this continuously distributed trait.


The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons.

  • Anni S Lee‎ et al.
  • eNeuro‎
  • 2016‎

Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract.


Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice.

  • Héctor De Jesús-Cortés‎ et al.
  • Neuroscience‎
  • 2016‎

Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice.


By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma.

  • Jun-Song Mo‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Pigment dispersion syndrome causes iris pigment release and often progresses to elevated intraocular pressure and pigmentary glaucoma (PG). Because melanin pigment can have adjuvant like properties and because the Gpnmb gene, which contributes to pigment dispersion in DBA/2J (D2) mice, is expressed in dendritic cells, we tested the hypothesis that ocular immune abnormalities participate in PG phenotypes. Strikingly, we show that D2 eyes exhibit defects of the normally immunosuppressive ocular microenvironment including inability of aqueous humor to inhibit T cell activation, failure to support anterior chamber (AC)-associated immune deviation, and loss of ocular immune privilege. Histologic analysis demonstrates infiltration of inflammatory leukocytes into the AC and their accumulation within the iris, whereas clinical indications of inflammation are typically very mild to undetectable. Importantly, some of these abnormalities precede clinical indications of pigment dispersal, suggesting an early role in disease etiology. Using bone marrow chimeras, we show that lymphohematopoietic cell lineages largely dictate the progression of pigment dispersion, the ability of the eye to support induction of AC-associated immune deviation, and the integrity of the blood/ocular barrier. These results suggest previously unsuspected roles for bone marrow-derived cells and ocular immune privilege in the pathogenesis of PG.


STXMPy: a new software package for automated region of interest selection and statistical analysis of XANES data.

  • Tamás Haraszti‎ et al.
  • Chemistry Central journal‎
  • 2010‎

Soft X-ray spectromicroscopy based absorption near-edge structure analysis, is a spectroscopic technique useful for investigating sample composition at a nanoscale of resolution. While the technique holds great promise for analysis of biological samples, current methodologies are challenged by a lack of automatic analysis software e. g. for selection of regions of interest and statistical comparisons of sample variability.


FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver.

  • Stephanie von Holstein-Rathlou‎ et al.
  • Cell metabolism‎
  • 2016‎

The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners. FGF21 does not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal that acts centrally to suppress the intake of "sweets."


Blast Preconditioning Protects Retinal Ganglion Cells and Reveals Targets for Prevention of Neurodegeneration Following Blast-Mediated Traumatic Brian Injury.

  • Matthew M Harper‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2019‎

The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function.


The Efemp1R345W Macular Dystrophy Mutation Causes Amplified Circadian and Photophobic Responses to Light in Mice.

  • Stewart Thompson‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2019‎

The R345W mutation in EFEMP1 causes malattia leventinese, an autosomal dominant eye disease with pathogenesis similar to an early-onset age-related macular degeneration. In mice, Efemp1R345W does not cause detectable degeneration but small subretinal deposits do accumulate. The purpose of this study was to determine whether there were abnormal responses to light at this presymptomatic stage in Efemp1R345W mice.


Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer's disease.

  • Jielin Xu‎ et al.
  • Cell reports‎
  • 2022‎

Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer's disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51-0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: