Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.

  • Tara Spence‎ et al.
  • Acta neuropathologica‎
  • 2014‎

Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.


MYCN amplification drives an aggressive form of spinal ependymoma.

  • David R Ghasemi‎ et al.
  • Acta neuropathologica‎
  • 2019‎

Spinal ependymal tumors form a histologically and molecularly heterogeneous group of tumors with generally good prognosis. However, their treatment can be challenging if infiltration of the spinal cord or dissemination throughout the central nervous system (CNS) occurs and, in these cases, clinical outcome remains poor. Here, we describe a new and relatively rare subgroup of spinal ependymal tumors identified using DNA methylation profiling that is distinct from other molecular subgroups of ependymoma. Copy number variation plots derived from DNA methylation arrays showed MYCN amplification as a characteristic genetic alteration in all cases of our cohort (n = 13), which was subsequently validated using fluorescence in situ hybridization. The histological diagnosis was anaplastic ependymoma (WHO Grade III) in ten cases and classic ependymoma (WHO Grade II) in three cases. Histological re-evaluation in five primary tumors and seven relapses showed characteristic histological features of ependymoma, namely pseudorosettes, GFAP- and EMA positivity. Electron microscopy revealed cilia, complex intercellular junctions and intermediate filaments in a representative sample. Taking these findings into account, we suggest to designate this molecular subgroup spinal ependymoma with MYCN amplification, SP-EPN-MYCN. SP-EPN-MYCN tumors showed distinct growth patterns with intradural, extramedullary localization mostly within the thoracic and cervical spine, diffuse leptomeningeal spread throughout the whole CNS and infiltrative invasion of the spinal cord. Dissemination was observed in 100% of cases. Despite high-intensity treatment, SP-EPN-MYCN showed significantly worse median progression free survival (PFS) (17 months) and median overall survival (OS) (87 months) than all other previously described molecular spinal ependymoma subgroups. OS and PFS were similar to supratentorial ependymoma with RELA-fusion (ST-EPN-RELA) and posterior fossa ependymoma A (PF-EPN-A), further highlighting the aggressiveness of this distinct new subgroup. We, therefore, propose to establish SP-EPN-MYCN as a new molecular subgroup in ependymoma and advocate for testing newly diagnosed spinal ependymal tumors for MYCN amplification.


DNA methylation-based classification of malformations of cortical development in the human brain.

  • Samir Jabari‎ et al.
  • Acta neuropathologica‎
  • 2022‎

Malformations of cortical development (MCD) comprise a broad spectrum of structural brain lesions frequently associated with epilepsy. Disease definition and diagnosis remain challenging and are often prone to arbitrary judgment. Molecular classification of histopathological entities may help rationalize the diagnostic process. We present a retrospective, multi-center analysis of genome-wide DNA methylation from human brain specimens obtained from epilepsy surgery using EPIC 850 K BeadChip arrays. A total of 308 samples were included in the study. In the reference cohort, 239 formalin-fixed and paraffin-embedded (FFPE) tissue samples were histopathologically classified as MCD, including 12 major subtype pathologies. They were compared to 15 FFPE samples from surgical non-MCD cortices and 11 FFPE samples from post-mortem non-epilepsy controls. We applied three different statistical approaches to decipher the DNA methylation pattern of histopathological MCD entities, i.e., pairwise comparison, machine learning, and deep learning algorithms. Our deep learning model, which represented a shallow neuronal network, achieved the highest level of accuracy. A test cohort of 43 independent surgical samples from different epilepsy centers was used to test the precision of our DNA methylation-based MCD classifier. All samples from the test cohort were accurately assigned to their disease classes by the algorithm. These data demonstrate DNA methylation-based MCD classification suitability across major histopathological entities amenable to epilepsy surgery and age groups and will help establish an integrated diagnostic classification scheme for epilepsy-associated MCD.


Identification of low and very high-risk patients with non-WNT/non-SHH medulloblastoma by improved clinico-molecular stratification of the HIT2000 and I-HIT-MED cohorts.

  • Martin Mynarek‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification.


Supratentorial ependymoma in childhood: more than just RELA or YAP.

  • Valentina Zschernack‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Two distinct genetically defined entities of ependymoma arising in the supratentorial compartment are characterized by the presence of either a C11orf95-RELA or a YAP-MAMLD1 fusion, respectively. There is growing evidence that supratentorial ependymomas without these genetic features exist. In this study, we report on 18 pediatric non-RELA/non-YAP supratentorial ependymomas that were systematically characterized by means of their histology, immunophenotype, genetics, and epigenomics. Comprehensive molecular analyses included high-resolution copy number analysis, methylation profiling, analysis of fusion transcripts by Nanostring technology, and RNA sequencing. Based upon histological and immunohistochemical features two main patterns were identified-RELA-like (n = 9) and tanycytic ependymomas (n = 6). In the RELA-like group histologically assigned to WHO grade III and resembling RELA-fused ependymomas, tumors lacked nuclear expression of p65-RelA as a surrogate marker for a pathological activation of the NF-κB pathway. Three tumors showed alternative C11orf95 fusions to MAML2 or NCOA1. A methylation-based brain tumor classifier assigned two RELA-like tumors to the methylation class "EP, RELA-fusion"; the others demonstrated no significant similarity score. Of the tanycytic group, 5/6 tumors were assigned a WHO grade II. No gene fusions were detected. Methylation profiling did not show any association with an established methylation class. We additionally identified two astroblastoma-like tumors that both presented with chromothripsis of chromosome 22 but lacked MN1 breaks according to FISH analysis. They revealed novel fusion events involving genes in chromosome 22. One further tumor with polyploid cytogenetics was interpreted as PFB ependymoma by the brain tumor methylation classifier but had no relation to the posterior fossa. Clinical follow-up was available for 16/18 patients. Patients with tanycytic and astroblastoma-like tumors had no relapse, while 2 patients with RELA-like ependymomas died. Our data indicate that in addition to ependymomas discovered so far, at least two more supratentorial ependymoma types (RELA-like and tanycytic) exist.


Clear cell meningiomas are defined by a highly distinct DNA methylation profile and mutations in SMARCE1.

  • Philipp Sievers‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Clear cell meningioma represents an uncommon variant of meningioma that typically affects children and young adults. Although an enrichment of loss-of-function mutations in the SMARCE1 gene has been reported for this subtype, comprehensive molecular investigations are lacking. Here we describe a molecularly distinct subset of tumors (n = 31), initially identified through genome-wide DNA methylation screening among a cohort of 3093 meningiomas, of which most were diagnosed histologically as clear cell meningioma. This cohort was further supplemented by an additional 11 histologically diagnosed clear cell meningiomas for analysis (n = 42). Targeted DNA sequencing revealed SMARCE1 mutations in 33/34 analyzed samples, accompanied by a nuclear loss of expression determined via immunohistochemistry and a decreased SMARCE1 transcript expression in the tumor cells. Analysis of time to progression or recurrence of patients within the clear cell meningioma group (n = 14) in comparison to those with meningioma WHO grade 2 (n = 220) revealed a similar outcome and support the assignment of WHO grade 2 to these tumors. Our findings indicate the existence of a highly distinct epigenetic signature of clear cell meningiomas, separate from all other variants of meningiomas, with recurrent mutations in the SMARCE1 gene. This suggests that these tumors may arise from a different precursor cell population than the broad spectrum of the other meningioma subtypes.


Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors.

  • Philipp Sievers‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum.

  • Karam T Alhalabi‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1.

  • Abigail K Suwala‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.


Clinically relevant molecular hallmarks of PFA ependymomas display intratumoral heterogeneity and correlate with tumor morphology.

  • Swenja Gödicke‎ et al.
  • Acta neuropathologica‎
  • 2024‎

Posterior fossa type A (PF-EPN-A, PFA) ependymoma are aggressive tumors that mainly affect children and have a poor prognosis. Histopathology shows significant intratumoral heterogeneity, ranging from loose tissue to often sharply demarcated, extremely cell-dense tumor areas. To determine molecular differences in morphologically different areas and to understand their clinical significance, we analyzed 113 PF-EPN-A samples, including 40 corresponding relapse samples. Cell-dense areas ranged from 0 to 100% of the tumor area and displayed a higher proportion of proliferating tumor cells (p < 0.01). Clinically, cell density was associated with poor progression-free and overall survival (pPFS = 0.0026, pOS < 0.01). Molecularly, tumor areas with low and high cell density showed diverging DNA methylation profiles regarding their similarity to distinct previously discovered PF-EPN-A subtypes in 9/21 cases. Prognostically relevant chromosomal changes at 1q and 6q showed spatial heterogeneity within single tumors and were significantly enriched in cell-dense tumor areas as shown by single-cell RNA (scRNA)-sequencing as well as copy number profiling and fluorescence in situ hybridization (FISH) analyses of different tumor areas. Finally, spatial transcriptomics revealed cell-dense areas of different tumors to be more similar than various different areas of the same tumor. High-density areas distinctly overexpressed genes encoding histone proteins, WNT5A, TGFB1, or IGF2. Relapsing tumors displayed a higher proportion of cell-dense areas (p = 0.036), a change in PF-EPN-A methylation subtypes (13/32 patients), and novel chromosome 1q gains and 6q losses (12/32 cases) compared to corresponding primary tumors. Our data suggest that PF-EPN-A ependymomas habor a previously unrecognized intratumoral heterogeneity with clinical implications, which has to be accounted for when selecting diagnostic material, inter alia, by histological evaluation of the proportion of cell-dense areas.


Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions.

  • Henri Bogumil‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.


The DNA methylome of DDR genes and benefit from RT or TMZ in IDH mutant low-grade glioma treated in EORTC 22033.

  • Pierre Bady‎ et al.
  • Acta neuropathologica‎
  • 2018‎

The optimal treatment for patients with low-grade glioma (LGG) WHO grade II remains controversial. Overall survival ranges from 2 to over 15 years depending on molecular and clinical factors. Hence, risk-adjusted treatments are required for optimizing outcome and quality of life. We aim at identifying mechanisms and associated molecular markers predictive for benefit from radiotherapy (RT) or temozolomide (TMZ) in LGG patients treated in the randomized phase III trial EORTC 22033. As candidate biomarkers for these genotoxic treatments, we considered the DNA methylome of 410 DNA damage response (DDR) genes. We first identified 62 functionally relevant CpG sites located in the promoters of 24 DDR genes, using the LGG data from The Cancer Genome Atlas. Then we tested their association with outcome [progression-free survival (PFS)] depending on treatment in 120 LGG patients of EORTC 22033, whose tumors were mutant for isocitrate dehydrogenase 1 or 2 (IDHmt), the molecular hallmark of LGG. The results suggested that seven CpGs of four DDR genes may be predictive for longer PFS in one of the treatment arms that comprised MGMT, MLH3, RAD21, and SMC4. Most interestingly, the two CpGs identified for MGMT are the same, previously selected for the MGMT-STP27 score that is used to determine the methylation status of the MGMT gene. This score was higher in the LGG with 1p/19q codeletion, in this and other independent LGG datasets. It was predictive for PFS in the TMZ, but not in the RT arm of EORTC 22033. The results support the hypothesis that a high score predicts benefit from TMZ treatment for patients with IDHmt LGG, regardless of the 1p/19q status. This MGMT methylation score may identify patients who benefit from first-line treatment with TMZ, to defer RT for long-term preservation of cognitive function and quality of life.


Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes.

  • Tanvi Sharma‎ et al.
  • Acta neuropathologica‎
  • 2019‎

In 2012, an international consensus paper reported that medulloblastoma comprises four molecular subgroups (WNT, SHH, Group 3, and Group 4), each associated with distinct genomic features and clinical behavior. Independently, multiple recent reports have defined further intra-subgroup heterogeneity in the form of biologically and clinically relevant subtypes. However, owing to differences in patient cohorts and analytical methods, estimates of subtype number and definition have been inconsistent, especially within Group 3 and Group 4. Herein, we aimed to reconcile the definition of Group 3/Group 4 MB subtypes through the analysis of a series of 1501 medulloblastomas with DNA-methylation profiling data, including 852 with matched transcriptome data. Using multiple complementary bioinformatic approaches, we compared the concordance of subtype calls between published cohorts and analytical methods, including assessments of class-definition confidence and reproducibility. While the lowest complexity solutions continued to support the original consensus subgroups of Group 3 and Group 4, our analysis most strongly supported a definition comprising eight robust Group 3/Group 4 subtypes (types I-VIII). Subtype II was consistently identified across all component studies, while all others were supported by multiple class-definition methods. Regardless of analytical technique, increasing cohort size did not further increase the number of identified Group 3/Group 4 subtypes. Summarizing the molecular and clinico-pathological features of these eight subtypes indicated enrichment of specific driver gene alterations and cytogenetic events amongst subtypes, and identified highly disparate survival outcomes, further supporting their biological and clinical relevance. Collectively, this study provides continued support for consensus Groups 3 and 4 while enabling robust derivation of, and categorical accounting for, the extensive intertumoral heterogeneity within Groups 3 and 4, revealed by recent high-resolution subclassification approaches. Furthermore, these findings provide a basis for application of emerging methods (e.g., proteomics/single-cell approaches) which may additionally inform medulloblastoma subclassification. Outputs from this study will help shape definition of the next generation of medulloblastoma clinical protocols and facilitate the application of enhanced molecularly guided risk stratification to improve outcomes and quality of life for patients and their families.


Genetic and epigenetic characterization of posterior pituitary tumors.

  • Simone Schmid‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets.


Integrative multi-omics reveals two biologically distinct groups of pilocytic astrocytoma.

  • Daniel Picard‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells.

  • Mark Barszczyk‎ et al.
  • Acta neuropathologica‎
  • 2014‎

Pediatric ependymomas are highly recurrent tumors resistant to conventional chemotherapy. Telomerase, a ribonucleoprotein critical in permitting limitless replication, has been found to be critically important for the maintenance of tumor-initiating cells (TICs). These TICs are chemoresistant, repopulate the tumor from which they are identified, and are drivers of recurrence in numerous cancers. In this study, telomerase enzymatic activity was directly measured and inhibited to assess the therapeutic potential of targeting telomerase. Telomerase repeat amplification protocol (TRAP) (n = 36) and C-circle assay/telomere FISH/ATRX staining (n = 76) were performed on primary ependymomas to determine the prevalence and prognostic potential of telomerase activity or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms, respectively. Imetelstat, a phase 2 telomerase inhibitor, was used to elucidate the effect of telomerase inhibition on proliferation and tumorigenicity in established cell lines (BXD-1425EPN, R254), a primary TIC line (E520) and xenograft models of pediatric ependymoma. Over 60 % of pediatric ependymomas were found to rely on telomerase activity to maintain telomeres, while no ependymomas showed evidence of ALT. Children with telomerase-active tumors had reduced 5-year progression-free survival (29 ± 11 vs 64 ± 18 %; p = 0.03) and overall survival (58 ± 12 vs 83 ± 15 %; p = 0.05) rates compared to those with tumors lacking telomerase activity. Imetelstat inhibited proliferation and self-renewal by shortening telomeres and inducing senescence in vitro. In vivo, Imetelstat significantly reduced subcutaneous xenograft growth by 40 % (p = 0.03) and completely abolished the tumorigenicity of pediatric ependymoma TICs in an orthotopic xenograft model. Telomerase inhibition represents a promising therapeutic approach for telomerase-active pediatric ependymomas found to characterize high-risk ependymomas.


RhoA regulates translation of the Nogo-A decoy SPARC in white matter-invading glioblastomas.

  • Peter Wirthschaft‎ et al.
  • Acta neuropathologica‎
  • 2019‎

Glioblastomas strongly invade the brain by infiltrating into the white matter along myelinated nerve fiber tracts even though the myelin protein Nogo-A prevents cell migration by activating inhibitory RhoA signaling. The mechanisms behind this long-known phenomenon remained elusive so far, precluding a targeted therapeutic intervention. This study demonstrates that the prevalent activation of AKT in gliomas increases the ER protein-folding capacity and enables tumor cells to utilize a side effect of RhoA activation: the perturbation of the IRE1α-mediated decay of SPARC mRNA. Once translation is initiated, glioblastoma cells rapidly secrete SPARC to block Nogo-A from inhibiting migration via RhoA. By advanced ultramicroscopy for studying single-cell invasion in whole, undissected mouse brains, we show that gliomas require SPARC for invading into white matter structures. SPARC depletion reduces tumor dissemination that significantly prolongs survival and improves response to cytostatic therapy. Our finding of a novel RhoA-IRE1 axis provides a druggable target for interfering with SPARC production and underscores its therapeutic value.


Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis.

  • Abigail K Suwala‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.


Gene expression profiling of Group 3 medulloblastomas defines a clinically tractable stratification based on KIRREL2 expression.

  • Andrey Korshunov‎ et al.
  • Acta neuropathologica‎
  • 2022‎

Medulloblastomas (MB) molecularly designated as Group 3 (Grp 3) MB represent a more clinically aggressive tumor variant which, as a group, displays heterogeneous molecular characteristics and disease outcomes. Reliable risk stratification of Grp 3 MB would allow for appropriate assignment of patients to aggressive treatment protocols and, vice versa, for sparing adverse effects of high-dose radio-chemotherapy in patients with standard or low-risk tumors. Here we performed RNA-based analysis on an international cohort of 179 molecularly designated Grp 3 MB treated with HIT protocols. We analyzed the clinical significance of differentially expressed genes, thereby developing optimal prognostic subdivision of this MB molecular group. We compared the transcriptome profiles of two Grp 3 MB subsets with various outcomes (76 died within the first 60 months vs. 103 survived this period) and identified 224 differentially expressed genes (DEG) between these two clinical groups (Limma R algorithm, adjusted p-value < 0.05). We selected the top six DEG overexpressed in the unfavorable cohort for further survival analysis and found that expression of all six genes strongly correlated with poor outcomes. However, only high expression of KIRREL2 was identified as an independent molecular prognostic indicator of poor patients' survival. Based on clinical and molecular patterns, four risk categories were outlined for Grp 3 MB patients: i. low-risk: M0-1/MYC non-amplified/KIRREL2 low (n = 48; 5-year OS-95%); ii. standard-risk: M0-1/MYC non-amplified/KIRREL2 high or M2-3/MYC non-amplified/KIRREL2 low (n = 65; 5-year OS-70%); iii. high-risk: M2-3/MYC non-amplified/KIRREL2 high (n = 36; 5-year OS-30%); iv. very high risk-all MYC amplified tumors (n = 30; 5-year OS-0%). Cross-validated survival models incorporating KIRREL2 expression with clinical features allowed for the reclassification of up to 50% of Grp 3 MB patients into a more appropriate risk category. Finally, KIRREL2 immunopositivity was also identified as a predictive indicator of Grp 3 MB poor survival, thus suggesting its application as a possible prognostic marker in routine clinical settings. Our results indicate that integration of KIRREL2 expression in risk stratification models may improve Grp 3 MB outcome prediction. Therefore, simple gene and/or protein expression analyses for this molecular marker could be easily adopted for Grp 3 MB prognostication and may help in assigning patients to optimal therapeutic approaches in prospective clinical trials.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: