Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 144 papers

Discrimination of HLA null and low expression alleles by cytokine-induced secretion of recombinant soluble HLA.

  • Jan Hinrichs‎ et al.
  • Molecular immunology‎
  • 2009‎

The disruption of disulfide bridges can decrease or abolish the cell surface expression of HLA class I molecules. Such disulfide bridges are formed by cysteine residues between amino acid (aa) positions 101/164 (alpha(2) domain) and 203/259 (alpha(3) domain). Sequence alterations in codons 101, 164, 203 and 259 have been observed in eleven HLA-A molecules. All of these variants except of A*3014L and A*3211Q have been reported to result in null expression alleles. In the case of HLA-A*3014L, a transversion at nucleotide position 563 replaces cysteine by serine at position 164 of the mature polypeptide. HLA-A*3014L is not detectable by standard microlymphocytotoxicity assay. To verify low or non-expression of this allele, we cloned soluble HLA-A*3014L and the reference allele HLA-A*3001 into a eukaryotic expression vector and transfected K562, C1R and HEK293 cells. Expression of soluble HLA-A*3014L and HLA-A*3001 was measured in the supernatants of transfected and untransfected cells incubated with or without IFN-gamma and/or TNF-alpha using a W6/32 and anti-beta(2)-microglobulin-based sandwich ELISA. Expression of mRNA transcripts of both alleles was determined by real-time RT-PCR. HLA-A*3014L was not detected in the supernatant of unstimulated transfectants. Stimulation with IFN-gamma and/or TNF-alpha led to an increase of HLA-A*3014L secretion to a detectable level and increased HLA-A*3001 expression up to 8-fold, but did not show any difference in the increase of mRNA levels between HLA-A*3014L and A*3001. Because of this lack of any difference in the mRNA transcription, the protein expression defect is most likely caused by the missing disulfide bond formation in the alpha2 domain. Thus, exposing the cells to cytokine stress allows to distinguish between low- and non-expressed alleles and to classify alleles with a questionable expression pattern (Q alleles). Classifying HLA alleles in expressed and non-expressed variants is essential for matching assessments. Additionally, this discrimination between cytokine inducible and non-inducible defect alleles may be important in allotransplant settings in which a cytokine storm usually occurs following pre-transplant myeloablative conditioning or post-transplant immunosuppressive therapy.


Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis.

  • Johan M Lorenzen‎ et al.
  • European heart journal‎
  • 2015‎

Osteopontin (OPN) is a multifunctional cytokine critically involved in cardiac fibrosis. However, the underlying mechanisms are unresolved. Non-coding RNAs are powerful regulators of gene expression and thus might mediate this process.


Autoimmune hepatitis in a murine autoimmune polyendocrine syndrome type 1 model is directed against multiple autoantigens.

  • Matthias Hardtke-Wolenski‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2015‎

Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations of the autoimmune regulator (AIRE) gene. Mouse studies have shown that this results in defective negative selection of T cells and defective early seeding of peripheral organs with regulatory T cells (Tregs). Aire deficiency in humans and mice manifests as spontaneous autoimmunity against multiple organs, and 20% of patients develop an autoimmune hepatitis (AIH). To study AIH in APS-1, we generated a murine model of human AIH on a BALB/c mouse background, in which Aire is truncated at exon 2. A subgroup of 24% of mice is affected by AIH, characterized by lymphoplasmacytic and periportal hepatic infiltrates, autoantibodies, elevated aminotransferases, and a chronic and progressive course of disease. Disease manifestation was dependent on specific Aire mutations and the genetic background of the mice. Though intrahepatic Treg numbers were increased and hyperproliferative, the intrahepatic CD4/CD8 ratio was decreased. The targets of the adaptive autoimmune response were polyspecific and not focussed on essential autoantigens, as described for other APS-1-related autoimmune diseases. The AIH could be treated with prednisolone or adoptive transfer of polyspecific Tregs.


Comparative Analysis of Clinical-Scale IFN-γ-Positive T-Cell Enrichment Using Partially and Fully Integrated Platforms.

  • Christoph Priesner‎ et al.
  • Frontiers in immunology‎
  • 2016‎

The infusion of enriched CMV-specific donor T-cells appears to be a suitable alternative for the treatment of drug-resistant CMV reactivation or de novo infection after both solid organ and hematopoietic stem cell transplantation. Antiviral lymphocytes can be selected from apheresis products using the CliniMACS Cytokine-Capture-System® either with the well-established CliniMACS® Plus (Plus) device or with its more versatile successor CliniMACS Prodigy® (Prodigy).


Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.

  • Alexandra Olling‎ et al.
  • Microbial pathogenesis‎
  • 2012‎

The small open reading frame tcdE is located between the genes tcdA and tcdB which encode toxin A (TcdA) and B (TcdB), respectively, within the pathogenicity locus of Clostridium difficile. Sequence and structure similarities to bacteriophage-encoded holins have led to the assumption that TcdE mediates the release of the toxins from C. difficile into the extracellular environment. A TcdE-deficient C. difficile 630 strain was generated by insertional inactivation of the tcdE gene. Data revealed that TcdE does not regulate or affect growth or sporogenesis. TcdE-deficiency was accompanied by a moderately increased accumulation of TcdA and TcdB prior to sporulation in this microorganism. Interestingly, this observation did not correlate with a delayed or inhibited toxin release: inactivation of TcdE neither significantly altered kinetics of release nor the absolute level of secreted TcdA and TcdB, indicating that TcdE does not account for the pathogenicity of C. difficile strain 630. Furthermore, mass spectrometry analysis could not reveal differences in the secretome of wild type and TcdE-deficient C. difficile, indicating that TcdE did not function as a secretion system for protein release. TcdE was expressed as a 19 kDa protein in C. difficile, whereas TcdE expressed in Escherichia coli appeared as a 19 and 16 kDa protein. Expression of the short 16 kDa TcdE correlated with bacterial cell death. We conclude that TcdE does not exhibit pore-forming function in C. difficile since in these cells only the non-lytic full length 19 kDa protein is expressed.


MHC universal cells survive in an allogeneic environment after incompatible transplantation.

  • Constança Figueiredo‎ et al.
  • BioMed research international‎
  • 2013‎

Cell, tissue, and organ transplants are commonly performed for the treatment of different diseases. However, major histocompatibility complex (MHC) diversity often prevents complete donor-recipient matching, resulting in graft rejection. This study evaluates in a preclinical model the capacity of MHC class I-silenced cells to engraft and grow upon allogeneic transplantation. Short hairpin RNA targeting β2-microglobulin (RN_shβ2m) was delivered into fibroblasts derived from LEW/Ztm (RT1(l)) (RT1-A(l)) rats using a lentiviral-based vector. MHC class I (RT1-A-) expressing and -silenced cells were injected subcutaneously in LEW rats (RT1(l)) and MHC-congenic LEW.1W rats (RT1(u)), respectively. Cell engraftment and the status of the immune response were monitored for eight weeks after transplantation. In contrast to RT1-A-expressing cells, RT1-A-silenced fibroblasts became engrafted and were still detectable eight weeks after allogeneic transplantation. Plasma levels of proinflammatory cytokines IL-1 α , IL-1 β , IL-6, TNF- α , and IFN- γ were significantly higher in animals transplanted with RT1-A-expressing cells than in those receiving RT1-A-silenced cells. Furthermore, alloantigen-specific T-cell proliferation rates derived from rats receiving RT1-A-expressing cells were higher than those in rats transplanted with RT1-A-silenced cells. These data suggest that silencing MHC class I expression might overcome the histocompatibility barrier, potentially opening up new avenues in the field of cell transplantation and regenerative medicine.


Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization.

  • Jan Fiedler‎ et al.
  • Journal of the American College of Cardiology‎
  • 2015‎

Long noncoding ribonucleic acids (lncRNAs) are a subclass of regulatory noncoding ribonucleic acids for which expression and function in human endothelial cells and angiogenic processes is not well studied.


Dissecting Epstein-Barr Virus-Specific T-Cell Responses After Allogeneic EBV-Specific T-Cell Transfer for Central Nervous System Posttransplant Lymphoproliferative Disease.

  • Rebecca E Schultze-Florey‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Epstein-Barr virus (EBV)-associated posttransplant lymphoproliferative disease (PTLD) with central nervous system (CNS) involvement is a severe complication after solid organ transplantation. Standard treatment with reduction of immunosuppression and anti-CD20 antibody application often fails leading to poor outcome. Here, we report the case of an 11-year-old boy with multilocular EBV-positive CNS PTLD 10 years after liver transplantation. Complete remission was achieved by repeated intravenous and intrathecal anti-CD20 antibody rituximab administration combined with intrathecal chemotherapy (methotrexate, cytarabine, prednisone) over a time period of 3 months. Due to the poor prognosis of CNS PTLD and lack of EBV-specific T-cells (EBV-CTLs) in patient's blood, we decided to perform EBV-directed T-cell immunotherapy as a consolidating treatment. The patient received five infusions of allogeneic EBV-CTLs from a 5/10 HLA-matched unrelated third-party donor. No relevant acute toxicity was observed. EBV-CTLs became detectable after first injection and increased during the treatment course. Next-generation sequencing (NGS) TCR-profiling verified the persistence and expansion of donor-derived EBV-specific clones. After two transfers, epitope spreading to unrelated EBV antigens occurred suggesting onset of endogenous T-cell production, which was supported by detection of recipient-derived clones in NGS TCR-profiling. Continuous complete remission was confirmed 27 months after initial diagnosis.


Personalized adoptive immunotherapy for patients with EBV-associated tumors and complications: Evaluation of novel naturally processed and presented EBV-derived T-cell epitopes.

  • Maren Bieling‎ et al.
  • Oncotarget‎
  • 2018‎

Morbidity and mortality of immunocompromised patients are increased by primary infection with or reactivation of Epstein-Barr virus (EBV), possibly triggering EBV+ post-transplant lymphoproliferative disease (PTLD). Adoptive transfer of EBV-specific cytotoxic T cells (EBV-CTLs) promises a non-toxic immunotherapy to effectively prevent or treat these complications. To improve immunotherapy and immunomonitoring this study aimed at identifying and evaluating naturally processed and presented HLA-A*03:01-restricted EBV-CTL epitopes as immunodominant targets. More than 15000 peptides were sequenced from EBV-immortalized B cells transduced with soluble HLA-A*03:01, sorted using different epitope prediction tools and eleven candidates were preselected. T2 and Flex-T peptide-binding and dissociation assays confirmed the stability of peptide-MHC complexes. Their immunogenicity and clinical relevance were evaluated by assessing the frequencies and functionality of EBV-CTLs in healthy donors (n > 10) and EBV+ PTLD-patients (n = 5) by multimer staining, Eli- and FluoroSpot assays. All eleven peptides elicited EBV-CTL responses in the donors. Their clinical applicability was determined by small-scale T-cell enrichment using Cytokine Secretion Assay and immunophenotyping. Mixtures of these peptides when added to the EBV Consensus pool revealed enhanced stimulation and enrichment efficacy. These EBV-specific epitopes broadening the repertoire of known targets will improve manufacturing of clinically applicable EBV-CTLs and monitoring of EBV-specific T-cell responses in patients.


HLA-G peptide preferences change in transformed cells: impact on the binding motif.

  • Alexander A Celik‎ et al.
  • Immunogenetics‎
  • 2018‎

HLA-G is known for its strictly restricted tissue distribution. HLA-G expression could be detected in immune privileged organs and many tumor entities such as leukemia, multiple myeloma, and non-Hodgkin and Hodgkin's lymphoma. This functional variability from mediation of immune tolerance to facilitation of tumor immune evasion strategies might translate to a differential NK cell inhibition between immune-privileged organs and tumor cells. The biophysical invariability of the HLA-G heavy chain and its contrary diversity in immunity implicates a strong influence of the bound peptides on the pHLA-G structure. The aim was to determine if HLA-G displays a tissue-specific peptide repertoire. Therefore, using soluble sHLA-G technology, we analyzed the K562 and HDLM-2 peptide repertoires. Although both cell lines possess a comparable proteome and recruit HLA-G-restricted peptides through the same peptide-loading pathway, the peptide features appear to be cell specific. HDLM-2 derived HLA-G peptides are anchored by an Arg at p1 and K562-derived peptides are anchored by a Lys. At p2, no anchor motif could be determined while peptides were anchored at pΩ with a Leu and showed an auxiliary anchor motif Pro at p3. To appreciate if the peptide anchor alterations are due to a cell-specific differential peptidome, we performed analysis of peptide availability within the different cell types. Yet, the comparison of the cell-specific proteome and HLA-G-restricted ligandome clearly demonstrates a tissue-specific peptide selection by HLA-G molecules. This exclusive and unexpected observation suggests an exquisite immune function of HLA-G.


Overexpression of preeclampsia induced microRNA-26a-5p leads to proteinuria in zebrafish.

  • Janina Müller-Deile‎ et al.
  • Scientific reports‎
  • 2018‎

So far the pathomechanism of preeclampsia in pregnancy is focussed on increased circulating levels of soluble fms-like tyrosin kinase-1 (sFLT-1) that neutralizes glomerular VEGF-A expression and prevents its signaling at the glomerular endothelium. As a result of changed glomerular VEGF-A levels endotheliosis and podocyte foot process effacement are typical morphological features of preeclampsia. Recently, microRNA-26a-5p (miR-26a-5p) was described to be also upregulated in the preeclamptic placenta. We found that miR-26a-5p targets VEGF-A expression by means of PIK3C2α in cultured human podocytes and that miR-26a-5p overexpression in zebrafish causes proteinuria, edema, glomerular endotheliosis and podocyte foot process effacement. Interestingly, recombinant zebrafish Vegf-Aa protein could rescue glomerular changes induced by miR-26a-5p. In a small pilot study, preeclamptic patients with podocyte damage identified by podocyturia, expressed significantly more urinary miR-26a-5p compared to healthy controls. Thus, functional and ultrastructural glomerular changes after miR-26a-5p overexpression can resemble the findings seen in preeclampsia and indicate a potential pathophysiological role of miR-26a-5p in addition to sFLT-1 in this disease.


Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury.

  • Kristina Sonnenschein‎ et al.
  • Cardiovascular research‎
  • 2019‎

Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury.


E. coli primase and DNA polymerase III holoenzyme are able to bind concurrently to a primed template during DNA replication.

  • Andrea Bogutzki‎ et al.
  • Scientific reports‎
  • 2019‎

During DNA replication in E. coli, a switch between DnaG primase and DNA polymerase III holoenzyme (pol III) activities has to occur every time when the synthesis of a new Okazaki fragment starts. As both primase and the χ subunit of pol III interact with the highly conserved C-terminus of single-stranded DNA-binding protein (SSB), it had been proposed that the binding of both proteins to SSB is mutually exclusive. Using a replication system containing the origin of replication of the single-stranded DNA phage G4 (G4ori) saturated with SSB, we tested whether DnaG and pol III can bind concurrently to the primed template. We found that the addition of pol III does not lead to a displacement of primase, but to the formation of higher complexes. Even pol III-mediated primer elongation by one or several DNA nucleotides does not result in the dissociation of DnaG. About 10 nucleotides have to be added in order to displace one of the two primase molecules bound to SSB-saturated G4ori. The concurrent binding of primase and pol III is highly plausible, since even the SSB tetramer situated directly next to the 3'-terminus of the primer provides four C-termini for protein-protein interactions.


Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases.

  • Janina Müller-Deile‎ et al.
  • Kidney international‎
  • 2017‎

The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases.


MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure.

  • Emilie Dubois-Deruy‎ et al.
  • Scientific reports‎
  • 2017‎

Although several risk factors such as infarct size have been identified, the progression of heart failure (HF) remains difficult to predict in clinical practice. Using an experimental rat model of post-myocardial infarction (MI), we previously identified 45 proteins differentially modulated during HF by proteomic analysis. This study sought to identify microRNAs (miRNAs) able to regulate these proteins and to test their relevance as biomarkers for HF. In silico bioinformatical analysis selected 13 miRNAs related to the 45 proteins previously identified. These miRNAs were analyzed in the rat and in cohorts of patients phenotyped for left ventricular remodeling (LVR). We identified that 3 miRNAs, miR-21-5p, miR-23a-3p and miR-222-3p, and their target Mn superoxide dismutase (SOD2) were significantly increased in LV and plasma of HF-rats. We found by luciferase activity a direct interaction of miR-222-3p with 3'UTR of SOD2. Transfection of human cardiomyocytes with miR-222-3p mimic or inhibitor induced respectively a decrease and an increase of SOD2 expression. Circulating levels of the 3 miRNAs and their target SOD2 were associated with high LVR post-MI in REVE-2 patients. We demonstrated for the first time the potential of microRNAs regulating SOD2 as new circulating biomarkers of HF.


CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation.

  • Anna Christina Dragon‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Immunosuppressive therapy or T-cell depletion in transplant patients can cause uncontrolled growth of Epstein-Barr virus (EBV)-infected B cells resulting in post-transplant lymphoproliferative disease (PTLD). Current treatment options do not distinguish between healthy and malignant B cells and are thereby often limited by severe side effects in the already immunocompromised patients. To specifically target EBV-infected B cells, we developed a novel peptide-selective chimeric antigen receptor (CAR) based on the monoclonal antibody TÜ165 which recognizes an Epstein-Barr nuclear antigen (EBNA)-3C-derived peptide in HLA-B*35 context in a T-cell receptor (TCR)-like manner. In order to attract additional immune cells to proximity of PTLD cells, based on the TÜ165 CAR, we moreover generated T cells redirected for universal cytokine-mediated killing (TRUCKs), which induce interleukin (IL)-12 release on target contact.


Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy.

  • Kristina Sonnenschein‎ et al.
  • Scientific reports‎
  • 2019‎

Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary heart diseases and is associated with a high risk of sudden cardiac death. HCM is characterized by pronounced hypertrophy of cardiomyocytes, fiber disarray and development of fibrosis and can be divided into a non-obstructive (HNCM) and obstructive form (HOCM) therefore requiring personalized therapeutic therapies. In the present study, we investigated the expression patterns of several circulating circular RNAs (circRNAs) as potential biomarkers in patients with HCM. We included 64 patients with HCM and 53 healthy controls to the study and quantitatively measured the expression of a set of circRNAs already known to be associated with cardiac diseases (circDNAJC6) and/or being highly abundant in blood (circTMEM56 and circMBOAT2). Abundancy of circRNAs was then correlated to relevant clinical parameters. Serum expression levels of circRNAs DNAJC6, TMEM56 and MBOAT2 were downregulated in patients with HCM. The inverse association between circRNA levels and HCM remained unchanged even after adjusting for confounding factors. All circRNAs, evaluated separately or in combination, showed a robust discrimination capacity when comparing control subjects with HCM, HNCM or HOCM patients (AUC from 0.722 to 0.949). Two circRNAs, circTMEM56 and circDNAJC6, significantly negatively correlated with echocardiographic parameters for HOCM. Collectively, circulating circRNAs DNAJC6, TMEM56 and MBOAT2 can distinguish between healthy and HCM patients. In addition, circTMEM56 and circDNAJC6 could serve as indicators of disease severity in patients with HOCM. Thus, circRNAs emerge as novel biomarkers for HCM facilitating the clinical decision making in a personalized manner.


The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity.

  • Gwendolin S Simper‎ et al.
  • Pharmaceutics‎
  • 2019‎

Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics.


High-intensity interval training in allogeneic adoptive T-cell immunotherapy - a big HIT?

  • Nele Carolin Heinemann‎ et al.
  • Journal of translational medicine‎
  • 2020‎

Adoptive transfer of virus-specific T cells (VSTs) represents a prophylactic and curative approach for opportunistic viral infections and reactivations after transplantation. However, inadequate frequencies of circulating memory VSTs in the T-cell donor's peripheral blood often result in insufficient enrichment efficiency and purity of the final T-cell product, limiting the effectiveness of this approach.


Pharmacokinetic Studies of Antisense Oligonucleotides Using MALDI-TOF Mass Spectrometry.

  • Markus Herkt‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Cardiac diseases are the most frequent causes of death in industrialized countries. Pathological remodeling of the heart muscle is caused by several etiologies such as prolonged hypertension or injuries that can lead to myocardial infarction and in serious cases also the death of the patient. The micro-RNA miR-132 has been identified as a master-switch in the development of cardiac hypertrophy and adverse remodeling. In this study, MALDI-TOF mass spectrometry (MS) was utilized to establish a robust and fast method to sensitively detect and accurately quantify anti-microRNA (antimiR) oligonucleotides in blood plasma. An antimiR oligonucleotide isolation protocol containing an ethanol precipitation step with glycogen as oligonucleotide carrier as well as a robust and reproducible MS-analysis procedure has been established. Proteinase K treatment was crucial for releasing antimiR oligonucleotides from plasma- as well as cellular proteins and reducing background derived from biological matrices. AntimiR oligonucleotide detection was achieved from samples of studies in different animal models such as mouse and pig where locked nucleic acids-(LNA)-modified antimiR oligonucleotides have been used to generate pharmacokinetic data.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: