Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Detailed reconstruction of the musculature in Limnognathia maerski (Micrognathozoa) and comparison with other Gnathifera.

  • Nicolas Bekkouche‎ et al.
  • Frontiers in zoology‎
  • 2014‎

Limnognathia maerski is the single species of the recently described taxon, Micrognathozoa. The most conspicuous character of this animal is the complex set of jaws, which resembles an even more intricate version of the trophi of Rotifera and the jaws of Gnathostomulida. Whereas the jaws of Limnognathia maerski previously have been subject to close examinations, the related musculature and other organ systems are far less studied. Here we provide a detailed study of the body and jaw musculature of Limnognathia maerski, employing confocal laser scanning microscopy of phalloidin stained musculature as well as transmission electron microscopy (TEM).


Morphology of the nervous system of monogonont rotifer Epiphanes senta with a focus on sexual dimorphism between feeding females and dwarf males.

  • Ludwik Gąsiorowski‎ et al.
  • Frontiers in zoology‎
  • 2019‎

Monogononta is a large clade of rotifers comprised of diverse morphological forms found in a wide range of ecological habitats. Most monogonont species display cyclical parthenogenesis, where generations of asexually reproducing females are interspaced by mixis events when sexual reproduction occurs between mictic females and dwarf, haploid males. The morphology of monogonont feeding females is relatively well described, however data on male anatomy are very limited. Thus far, male musculature of only two species has been described with confocal laser scanning microscopy (CLSM) and it remains unknown how dwarfism influences the neuroanatomy of males on detailed level.


A nemertean excitatory peptide/CCHamide regulates ciliary swimming in the larvae of Lineus longissimus.

  • Daniel Thiel‎ et al.
  • Frontiers in zoology‎
  • 2019‎

The trochozoan excitatory peptide (EP) and its ortholog, the arthropod CCHamide, are neuropeptides that are only investigated in very few animal species. Previous studies on different trochozoan species focused on their physiological effect in adult specimens, demonstrating a myo-excitatory effect, often on tissues of the digestive system. The function of EP in the planktonic larvae of trochozoans has not yet been studied.


Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha).

  • Aina Børve‎ et al.
  • Frontiers in zoology‎
  • 2014‎

Nemertodermatida is the sister group of the Acoela, which together form the Acoelomorpha, a taxon that comprises bilaterally symmetric, small aquatic worms. While there are several descriptions of the embryology of acoel species, descriptions of nemertodermatid development are scarce. To be able to reconstruct the ground pattern of the Acoelomorpha it is crucial to gain more information about the development of several nemertodermatid species. Here we describe the development of the nemertodermatid Meara stichopi using light and fluorescent microscopic methods.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: