Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development.

  • Bryan T Phillips‎ et al.
  • Developmental biology‎
  • 2006‎

The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.


A beta1,4-galactosyltransferase is required for convergent extension movements in zebrafish.

  • Quentin J Machingo‎ et al.
  • Developmental biology‎
  • 2006‎

Our understanding of how complex carbohydrates function during embryonic development is still very limited, primarily due to the large number of glycosyltransferases now known to be involved in their synthesis. To overcome these limitations, we have taken advantage of the zebrafish system to analyze the function of complex carbohydrates during development by down-regulating the expression of specific glycosyltransferases. Herein, we report the identification of the zebrafish ortholog of mammalian beta1,4-galactosyltransferase I, beta4GalT1, and its requirement for proper convergent extension movements during gastrulation. beta4GalT1 is expressed in the oocyte and throughout the embryo during the first 24 h of development. Knockdown of zebrafish beta4GalT1 by two independent morpholino oligonucleotides results in embryos with a truncated anterior-posterior axis, as well as elongated somites and moderate defects in the patterning of the head mesenchyme. Co-injection of zebrafish beta4GalT1 mRNA returns galactosyltransferase activity to control levels and rescues the defects produced by morpholino oligonucleotides. In situ hybridizations of various molecular markers reveal that the axial mesoderm of epiboly stage embryos is abnormally widened in beta4GalT1 morphants, indicative of abnormal convergent extension. Consistent with this, the rate of anterior-posterior axis elongation is reduced relative to control-injected embryos, similar to that seen in known convergent extension mutants. Among the many potential substrates for beta4GalT1 is laminin, a principle component of the extracellular matrix that supports cell movements such as those that occur during convergent extension. Previous in vitro studies have shown that the galactosylation status of laminin directly influences its ability to support cell spreading and migration. In this regard, laminin isolated from beta4GalT1 morphant embryos is poorly galactosylated, which may contribute to defective cell migration during convergent extension movements. This work demonstrates that zebrafish can be used to identify critical developmental roles for specific glycosyltransferases that would not be obvious otherwise, such as an absolute requirement for beta4GalT1 during convergent extension movements.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: