Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Genetic susceptibility for cow's milk allergy in Dutch children: the start of the allergic march?

  • Peter Henneman‎ et al.
  • Clinical and translational allergy‎
  • 2015‎

Cow's milk allergy (CMA) is the most common allergic disease in infancy. It is not clear, whether infants with CMA have an increased risk of developing other allergic diseases later in life, the so-called "allergic march". We aimed to detect genetic associations of CMA using reported single nucleotide polymorphisms (SNP) in other allergic diseases and genetic mutations within the filaggrin (FLG) gene. Both to investigate possible causes of CMA, which also suggests an "allergic march".


Cow's milk allergy in Dutch children: an epigenetic pilot survey.

  • Nicole C M Petrus‎ et al.
  • Clinical and translational allergy‎
  • 2016‎

Cow's milk allergy (CMA) is a common disease in infancy. Early environmental factors are likely to contribute to CMA. It is known that epigenetic gene regulation can be altered by environmental factors. We have set up a proof of concept study, aiming to detect epigenetic associations specific with CMA.


Genetic variant in CACNA1C is associated with PTSD in traumatized police officers.

  • Izabela M Krzyzewska‎ et al.
  • European journal of human genetics : EJHG‎
  • 2018‎

Posttraumatic stress disorder (PTSD) is a debilitating psychiatric disorder that may develop after a traumatic event. Here we aimed to identify epigenetic and genetic loci associated with PTSD. We included 73 traumatized police officers with extreme phenotypes regarding symptom severity despite similar trauma history: n = 34 had PTSD and n = 39 had minimal PTSD symptoms. Epigenetic and genetic profiles were based on the Illumina HumanMethylation450 BeadChip. We searched for differentially methylated probes (DMPs) and differentially methylated regions (DMRs). For genetic associations we analyzed the CpG-SNPs present on the array. We detected no genome-wide significant DMPs and we did not replicate previously reported DMPs associated with PTSD. However, GSE analysis of the top 100 DMPs showed enrichment of three genes involved in the dopaminergic neurogenesis pathway. Furthermore, we observed a suggestive association of one relatively large DMR between patients and controls, which was located at the PAX8 gene and previously associated with other psychiatric disorders. Finally, we validated five PTSD-associated CpG-SNPs identified with the array using sanger sequencing. We subsequently replicated the association of one common SNP (rs1990322) in the CACNA1C locus with PTSD in an independent cohort of traumatized children. The CACNA1C locus was previously associated with other psychiatric disorders, but not yet with PTSD. Thus, despite the small sample size, inclusion of extreme symptom severity phenotypes in a highly homogenous traumatized cohort enabled detection of epigenetic and genetic loci associated with PTSD. Moreover, here we showed that genetically confounded 450K probes are informative for genetic association analysis.


Comparing genome-scale DNA methylation and CNV marks between adult human cultured ITGA6+ testicular cells and seminomas to assess in vitro genomic stability.

  • Robert B Struijk‎ et al.
  • PloS one‎
  • 2020‎

Autologous transplantation of spermatogonial stem cells is a promising new avenue to restore fertility in infertile recipients. Expansion of the initial spermatogonial stem cell pool through cell culturing is a necessary step to obtain enough cells for effective repopulation of the testis after transplantation. Since in vitro propagation can lead to (epi-)genetic mutations and possibly malignant transformation of the starting cell population, we set out to investigate genome-wide DNA methylation status in uncultured and cultured primary testicular ITGA6+ sorted cells and compare them with germ cell tumor samples of the seminoma subtype. Seminomas displayed a severely global hypomethylated profile, including loss of genomic imprinting, which we did not detect in cultured primary testicular ITGA6+ cells. Differential methylation analysis revealed altered regulation of gamete formation and meiotic processes in cultured primary testicular ITGA6+ cells but not in seminomas. The pivotal POU5F1 marker was hypomethylated in seminomas but not in uncultured or cultured primary testicular ITGA6+ cells, which is reflected in the POU5F1 mRNA expression levels. Lastly, seminomas displayed a number of characteristic copy number variations that were not detectable in primary testicular ITGA6+ cells, either before or after culture. Together, the data show a distinct DNA methylation patterns in cultured primary testicular ITGA6+ cells that does not resemble the pattern found in seminomas, but also highlight the need for more sensitive methods to fully exclude the presence of malignant cells after culture and to further study the epigenetic events that take place during in vitro culture.


Epigenome-wide association study for perceived discrimination among sub-Saharan African migrants in Europe - the RODAM study.

  • Loes C van der Laan‎ et al.
  • Scientific reports‎
  • 2020‎

Sub-Saharan African (SSA) migrants in Europe experience psychosocial stressors, such as perceived discrimination (PD). The effect of such a stressor on health could potentially be mediated via epigenetics. In this study we performed an epigenome-wide association study (EWAS) to assess the association between levels of PD with genome-wide DNA methylation profiles in SSA migrants. The Illumina 450 K DNA-methylation array was used on whole blood samples of 340 Ghanaian adults residing in three European cities from the cross-sectional Research on Obesity and Diabetes among African Migrants (RODAM) study. PD was assessed using sum scores of the Everyday Discrimination Scale (EDS). Differentially methylated positions and regions (DMPs and DMRs) were identified through linear regression analysis. Two hypo-methylated DMPs, namely cg13986138 (CYFIP1) and cg10316525(ANKRD63), were found to be associated with PD. DMR analysis identified 47 regions associated with the PD. To the best of our knowledge, this survey is the first EWAS for PD in first generation SSA migrants. We identified two DMPs associated with PD. Whether these associations underlie a consequence or causal effect within the scope of biological functionality needs additional research.


A decline in PABPN1 induces progressive muscle weakness in oculopharyngeal muscle dystrophy and in muscle aging.

  • Seyed Yahya Anvar‎ et al.
  • Aging‎
  • 2013‎

Oculopharyngeal muscular dystrophy (OPMD) is caused by trinucleotide repeat expansion mutations in Poly(A) binding protein 1 (PABPN1). PABPN1 is a regulator of mRNA stability and is ubiquitously expressed. Here we investigated how symptoms in OPMD initiate only at midlife and why a subset of skeletal muscles is predominantly affected. Genome-wide RNA expression profiles from Vastus lateralis muscles human carriers of expanded-PABPN1 at pre-symptomatic and symptomatic stages were compared with healthy controls. Major expression changes were found to be associated with age rather than with expression of expanded-PABPN1, instead transcriptomes of OPMD and elderly muscles were significantly similar (P<0.05). Using k-means clustering we identified age-dependent trends in both OPMD and controls, but trends were often accelerated in OPMD. We report an age-regulated decline in PABPN1 levels in Vastus lateralis muscles from the fifth decade. In concurrence with severe muscle degeneration in OPMD, the decline in PABPN1 accelerated in OPMD and was specific to skeletal muscles. Reduced PABPN1 levels (30% to 60%) in muscle cells induced myogenic defects and morphological signatures of cellular aging in proportion to PABPN1 expression levels. We suggest that PABPN1 levels regulate muscle cell aging and OPMD represents an accelerated muscle aging disorder.


Nuclear entrapment and extracellular depletion of PCOLCE is associated with muscle degeneration in oculopharyngeal muscular dystrophy.

  • Vered Raz‎ et al.
  • BMC neurology‎
  • 2013‎

Muscle fibrosis characterizes degenerated muscles in muscular dystrophies and in late onset myopathies. Fibrotic muscles often exhibit thickening of the extracellular matrix (ECM). The molecular regulation of this process is not fully understood. In oculopharyngeal muscular dystrophy (OPMD), an expansion of an alanine tract at the N-terminus of poly(A)-binding protein nuclear 1 (PABPN1) causes muscle symptoms. OPMD patient muscle degeneration initiates after midlife, while at an earlier age carriers of alanine expansion mutant PABPN1 (expPABPN1) are clinically pre-symptomatic. OPMD is characterized by fibrosis in skeletal muscles but the causative molecular mechanisms are not fully understood.


Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation.

  • Eleonora de Klerk‎ et al.
  • Nucleic acids research‎
  • 2012‎

The choice for a polyadenylation site determines the length of the 3'-untranslated region (3'-UTRs) of an mRNA. Inclusion or exclusion of regulatory sequences in the 3'-UTR may ultimately affect gene expression levels. Poly(A) binding protein nuclear 1 (PABPN1) is involved in polyadenylation of pre-mRNAs. An alanine repeat expansion in PABPN1 (exp-PABPN1) causes oculopharyngeal muscular dystrophy (OPMD). We hypothesized that previously observed disturbed gene expression patterns in OPMD muscles may have been the result of an effect of PABPN1 on alternative polyadenylation, influencing mRNA stability, localization and translation. A single molecule polyadenylation site sequencing method was developed to explore polyadenylation site usage on a genome-wide level in mice overexpressing exp-PABPN1. We identified 2012 transcripts with altered polyadenylation site usage. In the far majority, more proximal alternative polyadenylation sites were used, resulting in shorter 3'-UTRs. 3'-UTR shortening was generally associated with increased expression. Similar changes in polyadenylation site usage were observed after knockdown or overexpression of expanded but not wild-type PABPN1 in cultured myogenic cells. Our data indicate that PABPN1 is important for polyadenylation site selection and that reduced availability of functional PABPN1 in OPMD muscles results in use of alternative polyadenylation sites, leading to large-scale deregulation of gene expression.


Higher Polygenetic Predisposition for Asthma in Cow's Milk Allergic Children.

  • Philip R Jansen‎ et al.
  • Nutrients‎
  • 2018‎

Cow's milk allergy (CMA) is an early-onset allergy of which the underlying genetic factors remain largely undiscovered. CMA has been found to co-occur with other allergies and immunological hypersensitivity disorders, suggesting a shared genetic etiology. We aimed to (1) investigate and (2) validate whether CMA children carry a higher genetic susceptibility for other immunological hypersensitivity disorders using polygenic risk score analysis (PRS) and prospective phenotypic data. Twenty-two CMA patients of the Dutch EuroPrevall birth cohort study and 307 reference subjects were genotyped using single nucleotide polymorphism (SNP) array. Differentially genetic susceptibility was estimated using PRS, based on multiple P-value thresholds for SNP inclusion of previously reported genome-wide association studies (GWAS) on asthma, autism spectrum disorder, atopic dermatitis, inflammatory bowel disease and rheumatoid arthritis. These associations were validated with prospective data outcomes during a six-year follow-up in 19 patients. We observed robust and significantly higher PRSs of asthma in CMA children compared to the reference set. Association analyses using the prospective data indicated significant higher PRSs in former CMA patients suffering from asthma and related traits. Our results suggest a shared genetic etiology between CMA and asthma and a considerable predictive sensitivity potential for subsequent onset of asthma which indicates a potential use for early clinical asthma intervention programs.


Differential DNA methylation in familial hypercholesterolemia.

  • Laurens F Reeskamp‎ et al.
  • EBioMedicine‎
  • 2020‎

Familial hypercholesterolemia (FH) is a monogenic disorder characterized by elevated low-density lipoprotein cholesterol (LDL-C). A FH causing genetic variant in LDLR, APOB, or PCSK9 is not identified in 12-60% of clinical FH patients (FH mutation-negative patients). We aimed to assess whether altered DNA methylation might be associated with FH in this latter group.


Differential DNA Methylation Is Associated With Hippocampal Abnormalities in Pediatric Posttraumatic Stress Disorder.

  • Judith B M Ensink‎ et al.
  • Biological psychiatry. Cognitive neuroscience and neuroimaging‎
  • 2021‎

Recent findings in neuroimaging and epigenetics offer important insights into brain structures and biological pathways of altered gene expression associated with posttraumatic stress disorder (PTSD). However, it is unknown to what extent epigenetic mechanisms are associated with PTSD and its neurobiology in youth.


Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus.

  • Adrienne Tin‎ et al.
  • Nature communications‎
  • 2021‎

Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E-7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.


Aberrant PRDM2 methylation as an early event in serrated lesions destined to evolve into microsatellite-instable colorectal cancers.

  • David Efwm van Toledo‎ et al.
  • The journal of pathology. Clinical research‎
  • 2024‎

Up to 30% of colorectal cancers (CRCs) develop from sessile serrated lesions (SSLs). Within the serrated neoplasia pathway, at least two principally distinct oncogenetic routes exist generating microsatellite-stable and microsatellite-instable CRCs, respectively. Aberrant DNA methylation (DNAm) is found early in the serrated pathway and might play a role in both oncogenetic routes. We studied a cohort of 23 SSLs with a small focus (<10 mm) of dysplasia or cancer, 10 of which were MLH1 deficient and 13 MLH1 proficient. By comparing, for each SSL, the methylation status of (1) the region of dysplasia or cancer (SSL-D), (2) the nondysplastic SSL (SSL), and (3) adjacent normal mucosa, differentially methylated probes (DMPs) and regions (DMRs) were assessed both genome-wide as well as in a tumor-suppressor gene-focused approach. By comparing DNAm of MLH1-deficient SSL-Ds with their corresponding SSLs, we identified five DMRs, including those annotating for PRDM2 and, not unexpectedly, MLH1. PRDM2 gene promotor methylation was associated with MLH1 expression status, as it was largely hypermethylated in MLH1-deficient SSL-Ds and hypomethylated in MLH1-proficient SSL-Ds. Significantly increased DNAm levels of PRDM2 and MLH1, in particular at 'critical' MLH1 probe sites, were to some extent already visible in SSLs as compared to normal mucosa (p = 0.02, p = 0.01, p < 0.0001, respectively). No DMRs, nor DMPs, were identified for SSLs destined to evolve into MLH1-proficient SSL-Ds. Our data indicate that, within both arms of the serrated CRC pathway, the majority of the epigenetic alterations are introduced early during SSL formation. Promoter hypermethylation of PRDM2 and MLH1 on the other hand specifically initiates in SSLs destined to transform into MLH1-deficient CRCs suggesting that the fate of SSLs may not necessarily result from a stochastic process but possibly is already imprinted and predisposed.


An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study.

  • Karlijn A C Meeks‎ et al.
  • Clinical epigenetics‎
  • 2017‎

Epigenome-wide association studies (EWAS) have identified DNA methylation loci involved in adiposity. However, EWAS on adiposity in sub-Saharan Africans are lacking despite the high burden of adiposity among African populations. We undertook an EWAS for anthropometric indices of adiposity among Ghanaians aiming to identify DNA methylation loci that are significantly associated.


Epigenome-wide association study of plasma lipids in West Africans: the RODAM study.

  • Eva L van der Linden‎ et al.
  • EBioMedicine‎
  • 2023‎

DNA-methylation has been associated with plasma lipid concentration in populations of diverse ethnic backgrounds, but epigenome-wide association studies (EWAS) in West-Africans are lacking. The aim of this study was to identify DNA-methylation loci associated with plasma lipids in Ghanaians.


Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients.

  • Seyed Yahya Anvar‎ et al.
  • Skeletal muscle‎
  • 2011‎

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder caused by a poly-alanine expansion mutation in the Poly(A) Binding Protein Nuclear 1 (PABPN1). The molecular mechanisms that regulate disease onset and progression are largely unknown. In order to identify molecular pathways that are consistently associated with OPMD, we performed an integrated high-throughput transcriptome study in affected muscles of OPMD animal models and patients. The ubiquitin-proteasome system (UPS) was found to be the most consistently and significantly OPMD-deregulated pathway across species. We could correlate the association of the UPS OPMD-deregulated genes with stages of disease progression. The expression trend of a subset of these genes is age-associated and therefore, marks the late onset of the disease, and a second group with expression trends relating to disease-progression. We demonstrate a correlation between expression trends and entrapment into PABPN1 insoluble aggregates of OPMD-deregulated E3 ligases. We also show that manipulations of proteasome and immunoproteasome activity specifically affect the accumulation and aggregation of mutant PABPN1. We suggest that the natural decrease in proteasome expression and its activity during muscle aging contributes to the onset of the disease.


Genome-wide DNA methylation analysis on C-reactive protein among Ghanaians suggests molecular links to the emerging risk of cardiovascular diseases.

  • Felix P Chilunga‎ et al.
  • NPJ genomic medicine‎
  • 2021‎

Molecular mechanisms at the intersection of inflammation and cardiovascular diseases (CVD) among Africans are still unknown. We performed an epigenome-wide association study to identify loci associated with serum C-reactive protein (marker of inflammation) among Ghanaians and further assessed whether differentially methylated positions (DMPs) were linked to CVD in previous reports, or to estimated CVD risk in the same population. We used the Illumina Infinium® HumanMethylation450 BeadChip to obtain DNAm profiles of blood samples in 589 Ghanaians from the RODAM study (without acute infections, not taking anti-inflammatory medications, CRP levels < 40 mg/L). We then used linear models to identify DMPs associated with CRP concentrations. Post-hoc, we evaluated associations of identified DMPs with elevated CVD risk estimated via ASCVD risk score. We also performed subset analyses at CRP levels ≤10 mg/L and replication analyses on candidate probes. Finally, we assessed for biological relevance of our findings in public databases. We subsequently identified 14 novel DMPs associated with CRP. In post-hoc evaluations, we found that DMPs in PC, BTG4 and PADI1 showed trends of associations with estimated CVD risk, we identified a separate DMP in MORC2 that was associated with CRP levels ≤10 mg/L, and we successfully replicated 65 (24%) of previously reported DMPs. All DMPs with gene annotations (13) were biologically linked to inflammation or CVD traits. We have identified epigenetic loci that may play a role in the intersection between inflammation and CVD among Ghanaians. Further studies among other Africans are needed to confirm our findings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: