Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Identification of a membrane-less compartment regulating invadosome function and motility.

  • Kristyna Sala‎ et al.
  • Scientific reports‎
  • 2018‎

Depletion of liprin-α1, ERC1 or LL5 scaffolds inhibits extracellular matrix degradation by invasive cells. These proteins co-accumulate near invadosomes in NIH-Src cells, identifying a novel invadosome-associated compartment distinct from the core and adhesion ring of invadosomes. Depletion of either protein perturbs the organization of invadosomes without influencing the recruitment of MT1-MMP metalloprotease. Liprin-α1 is not required for de novo formation of invadosomes after their disassembly by microtubules and Src inhibitors, while its depletion inhibits invadosome motility, thus affecting matrix degradation. Fluorescence recovery after photobleaching shows that the invadosome-associated compartment is dynamic, while correlative light immunoelectron microscopy identifies bona fide membrane-free invadosome-associated regions enriched in liprin-α1, which is virtually excluded from the invadosome core. The results indicate that liprin-α1, LL5 and ERC1 define a novel dynamic membrane-less compartment that regulates matrix degradation by affecting invadosome motility.


Direct stimulation of ERBB2 highlights a novel cytostatic signaling pathway driven by the receptor Thr701 phosphorylation.

  • Marco Gaviraghi‎ et al.
  • Scientific reports‎
  • 2020‎

ERBB2 is a ligand-less tyrosine kinase receptor expressed at very low levels in normal tissues; when overexpressed, it is involved in malignant transformation and tumorigenesis in several carcinomas. In cancer cells, ERBB2 represents the preferred partner of other members of the ERBB receptor family, leading to stronger oncogenic signals, by promoting both ERK and AKT activation. The identification of the specific signaling downstream of ERBB2 has been impaired by the lack of a ligand and of an efficient way to selectively activate the receptor. In this paper, we found that antibodies (Abs) targeting different epitopes on the ERBB2 extracellular domain foster the activation of ERBB2 homodimers, and surprisingly induce a unique cytostatic signaling cascade promoting an ERK-dependent ERBB2 Thr701 phosphorylation, leading to AKT de-phosphorylation, via PP2A Ser/Thr phosphatases. Furthermore, the immunophilin Cyclophilin A plays a crucial role in this pathway, acting as a negative modulator of AKT de-phosphorylation, possibly by competing with Ser/Thr phosphatases for binding to AKT. Altogether, our data show that Ab recognizing ERBB2 extracellular domain function as receptor agonists, promoting ERBB2 homodimer activation, leading to an anti-proliferative signaling. Thus, the ultimate outcome of ERBB2 activity might depend on the dimerization status: pro-oncogenic in the hetero-, and anti-oncogenic in the homo-dimeric form.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: