Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G protein-coupled receptor kinase 3 signalosome.

  • Matej Gazdarica‎ et al.
  • Journal of neurochemistry‎
  • 2022‎

Cannabinoid receptor 1 (CB1R), a G protein-coupled receptor, plays a fundamental role in synaptic plasticity. Abnormal activity and deregulation of CB1R signaling result in a broad spectrum of pathological conditions. CB1R signaling is regulated by receptor desensitization including phosphorylation of residues within the intracellular C terminus by G protein-coupled receptor kinases (GRKs) that may lead to endocytosis. Furthermore, CB1R signaling is regulated by the protein Src homology 3-domain growth factor receptor-bound 2-like (SGIP1) that hinders receptor internalization, while enhancing CB1R association with β-arrestin. It has been postulated that phosphorylation of two clusters of serine/threonine residues, 425 SMGDS429 and 460 TMSVSTDTS468 , within the CB1R C-tail controls dynamics of the association between receptor and its interaction partners involved in desensitization. Several molecular determinants of these events are still not well understood. We hypothesized that the dynamics of these interactions are modulated by SGIP1. Using a panel of CB1Rs mutated in the aforementioned serine and threonine residues, together with an array of Bioluminescence energy transfer-based (BRET) sensors, we discovered that GRK3 forms complexes with Gβγ subunits of G proteins that largely independent of GRK3's interaction with CB1R. Furthermore, CB1R interacts only with activated GRK3. Interestingly, phosphorylation of two specific residues on CB1R triggers GRK3 dissociation from the desensitized receptor. SGIP1 increases the association of GRK3 with Gβγ subunits of G proteins, and with CB1R. Altogether, our data suggest that the CB1R signalosome complex is dynamically controlled by sequential phosphorylation of the receptor C-tail and is also modified by SGIP1.


Discovery and characterization of two novel CB1 receptor splice variants with modified N-termini in mouse.

  • Sabine Ruehle‎ et al.
  • Journal of neurochemistry‎
  • 2017‎

Numerous studies have been carried out in the mouse model, investigating the role of the cannabinoid receptor type 1 (CB1). However, mouse CB1 (mCB1) receptor differs from human CB1 (hCB1) receptor in 13 amino acid residues. Two splice variants, hCB1a and hCB1b, diverging in their amino-termini, have been reported to be unique for hCB1 and, via different signaling properties, contribute to CB1 receptor physiology and pathophysiology. We hypothesized that splice variants also exist for the mCB1 receptor and have different signaling properties. On murine hippocampal cDNA, we identified two novel mCB1 receptor splice variants generated by splicing of introns with 117 bp and 186 bp in the N-terminal domain, corresponding to deletions of 39 or 62 amino acids, respectively. The mRNAs for the splice variants mCB1a and mCB1b are expressed at low levels in different brain regions. Western blot analysis of protein extracts from stably transfected HEK293 cells indicates a strongly reduced glycosylation because of the absence of two glycosylation sites in mCB1b. On-cell western analysis in these stable lines revealed increased internalization of mCB1a and mCB1b upon stimulation with the agonist WIN55,212-2 as compared to mCB1. Results also point toward an increased affinity to SR141716 for mCB1a, as well as slightly enhanced inhibition of neurotransmission compared to mCB1. In mCB1b, agonist-induced MAPK phosphorylation was decreased compared to mCB1 and mCB1a. Identification of mouse CB1 receptor splice variants may help to explain differences found between human and mouse endocannabinoid systems and improve the understanding of CB1 receptor signaling and trafficking in different species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: