Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Widespread changes of white matter microstructure in obsessive-compulsive disorder: effect of drug status.

  • Francesco Benedetti‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2013‎

Diffusion tensor imaging (DTI) allows the study of white matter (WM) structure. Literature suggests that WM structure could be altered in obsessive-compulsive disorder (OCD) proportional to the severity of the disease. Heterogeneity of brain imaging methods, of the studied samples, and of drug treatments make localization, nature, and severity of the WM abnormalities unclear. We applied Tract-Based Spatial Statistics (TBSS) of DTI measures to compare fractional anisotropy (FA), mean, axial, and radial diffusivity of the WM skeleton in a group of 40 consecutively admitted inpatients affected by severe OCD (18 drug-naive, and 22 with an ongoing drug treatment) and 41 unrelated healthy volunteers from the general population. Data were analyzed accounting for the effects of multiple comparisons, and of age, sex, and education as nuisance covariates. Compared to controls, OCD patients showed a widespread reduction of FA with a concurrent increase of mean and radial diffusivity. In no brain areas patients had higher FA or lower diffusivity values than controls. These differences were observed in drug-treated patients compared to drug-naive patients and healthy controls, which in turn did not differ among themselves in any DTI measure. Reduced FA with increased mean and radial diffusivity suggests significant changes in myelination of WM tracts, without axonal loss. Drug treatments could modify the structure of cell membranes and myelin sheaths by influencing cellular lipogenesis, cholesterol homeostasis, autophagy, oligodendrocyte differentiation and remyelination. Changes of DTI measures in drug-treated OCD patients could reflect pathophysiological underpinnings of OCD, or a yet unexplored part of the mechanism of action of drugs.


Perceived social isolation is associated with altered functional connectivity in neural networks associated with tonic alertness and executive control.

  • Elliot A Layden‎ et al.
  • NeuroImage‎
  • 2017‎

Perceived social isolation (PSI), colloquially known as loneliness, is associated with selectively altered attentional, cognitive, and affective processes in humans, but the neural mechanisms underlying these adjustments remain largely unexplored. Behavioral, eye tracking, and neuroimaging research has identified associations between PSI and implicit hypervigilance for social threats. Additionally, selective executive dysfunction has been evidenced by reduced prepotent response inhibition in social Stroop and dichotic listening tasks. Given that PSI is associated with pre-attentional processes, PSI may also be related to altered resting-state functional connectivity (FC) in the brain. Therefore, we conducted the first resting-state fMRI FC study of PSI in healthy young adults. Five-minute resting-state scans were obtained from 55 participants (31 females). Analyses revealed robust associations between PSI and increased brain-wide FC in areas encompassing the right central operculum and right supramarginal gyrus, and these associations were not explained by depressive symptomatology, objective isolation, or demographics. Further analyses revealed that PSI was associated with increased FC between several nodes of the cingulo-opercular network, a network known to underlie the maintenance of tonic alertness. These regions encompassed the bilateral insula/frontoparietal opercula and ACC/pre-SMA. In contrast, FC between the cingulo-opercular network and right middle/superior frontal gyrus was reduced, a finding associated with diminished executive function in prior literature. We suggest that, in PSI, increased within-network cingulo-opercular FC may be associated with hypervigilance to social threat, whereas reduced right middle/superior frontal gyrus FC to the cingulo-opercular network may be associated with diminished impulse control.


Structural and functional brain signatures of C9orf72 in motor neuron disease.

  • Federica Agosta‎ et al.
  • Neurobiology of aging‎
  • 2017‎

This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker.


Ventral and dorsal visual streams in posterior cortical atrophy: a DT MRI study.

  • Raffaella Migliaccio‎ et al.
  • Neurobiology of aging‎
  • 2012‎

Using diffusion tensor magnetic resonance imaging tractography, ventral (inferior longitudinal fasciculus) and fronto-occipital (inferior fronto-occipital fasciculus) and dorsal (fronto-parietal superior longitudinal fasciculus) visual pathways were assessed in 7 patients with posterior cortical atrophy (PCA), showing either predominantly ventral or additional dorsal cognitive deficits. Corpus callosum and corticospinal tracts were also studied. Gray and white matter atrophy was assessed using voxel-based morphometry. In all PCA patients, abnormal diffusivity indexes were found in bilateral inferior longitudinal fasciculus and inferior fronto-occipital fasciculus, with a left-side predominance. Patients also had mild microstructural damage to the corpus callosum. The 2 patients with more dorsal symptoms also showed right fronto-parietal superior longitudinal fasciculus abnormalities. Corticospinal tracts were normal, bilaterally. When studied separately, patients with ventral clinical impairment showed a pattern of atrophy mainly located in the ventral occipitotemporal regions, bilaterally; patients with both ventral and dorsal clinical deficits showed additional atrophy of the bilateral inferior parietal lobe. Magnetic resonance imaging patterns of abnormalities mirror closely the clinical phenotypes and could provide reliable ante mortem markers of tissue damage in PCA.


Functional brain changes in early Parkinson's disease during motor response and motor inhibition.

  • Francesca Baglio‎ et al.
  • Neurobiology of aging‎
  • 2011‎

Motor impairment represents the main clinical feature of Parkinson's disease (PD). Cognitive deficits are also frequently observed in patients with PD, with a prominent involvement of executive functions and visuo-spatial abilities. We used event-related functional MRI (fMRI) and a paradigm based on visual attention and motor inhibition (Go/NoGO-task) to investigate brain activations in 13 patients with early PD in comparison with 11 healthy controls. The two groups did not report behavioural differences in task performance. During motor inhibition (NoGO-effect), PD patients compared to controls showed an increased activation in the prefrontal cortex and in the basal ganglia. They also showed a reduced and less coherent hemodynamic response in the occipital cortex. These results indicate that specific cortico-subcortical functional changes, involving not only the fronto-striatal network but also the temporal-occipital cortex, are already present in patients with early PD and no clinical evidence of cognitive impairment. We discuss our findings in terms of compensatory mechanisms (fronto-striatal changes) and preclinical signs of visuo-perceptual deficits and visual hallucinations.


Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study.

  • Antonia Ceccarelli‎ et al.
  • NeuroImage‎
  • 2009‎

Longitudinal voxel-based morphometry studies have demonstrated morphological changes in cortical structures following motor and cognitive learning. In this study, we applied, for the first time, tensor-based morphometry (TBM) to assess the short-term structural brain gray matter (GM) changes associated with cognitive learning in healthy subjects. Using a 3 T scanner, a 3D T1-weighted sequence was acquired from 32 students at baseline and after two weeks. Students were separated into two groups: 13 defined as "students in cognitive training", who underwent a two-week cognitive learning period, and 19 "students not in cognitive training", who were not involved in any teaching activity. GM changes were assessed using TBM and statistical parametric mapping. Baseline regional GM volume did not differ between the two groups. At follow up, compared to "students not in cognitive training", the "students in cognitive training" had a significant GM volume increase in the dorsomedial frontal cortex, the orbitofrontal cortex, and the precuneus (p<0.001). These results suggest that cognitive learning results in short-term structural GM changes of neuronal networks of the human brain, which are known to be involved in cognition. This may have important implications for the development of rehabilitation strategies in patients with neurological diseases.


Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells.

  • Laura Mercurio‎ et al.
  • PloS one‎
  • 2017‎

The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM), the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC), a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells.


Along-tract statistics of neurite orientation dispersion and density imaging diffusion metrics to enhance MR tractography quantitative analysis in healthy controls and in patients with brain tumors.

  • Valentina Pieri‎ et al.
  • Human brain mapping‎
  • 2021‎

Along-tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities, new parameters reflecting the relative contribution of different diffusion compartments in the tissue can be estimated through advanced diffusion MRI methods as neurite orientation dispersion and density imaging (NODDI), leading to a more specific microstructural characterization. In this study, we extracted both DTI- and NODDI-derived quantitative microstructural diffusion metrics along the most eloquent fiber tracts in 15 healthy subjects and in 22 patients with brain tumors. We obtained a robust intraprotocol reference database of normative along-tract microstructural metrics, and their corresponding plots, from healthy fiber tracts. Each diffusion metric of individual patient's fiber tract was then plotted and statistically compared to the normative profile of the corresponding metric from the healthy fiber tracts. NODDI-derived metrics appeared to account for the pathological microstructural changes of the peritumoral tissue more accurately than DTI-derived ones. This approach may be useful for future studies that may compare healthy subjects to patients diagnosed with other pathological conditions.


A hierarchical procedure to select intrauterine and extrauterine factors for methodological validation of preterm birth risk estimation.

  • Pasquale Anthony Della Rosa‎ et al.
  • BMC pregnancy and childbirth‎
  • 2021‎

Etiopathogenesis of preterm birth (PTB) is multifactorial, with a universe of risk factors interplaying between the mother and the environment. It is of utmost importance to identify the most informative factors in order to estimate the degree of PTB risk and trace an individualized profile. The aims of the present study were: 1) to identify all acknowledged risk factors for PTB and to select the most informative ones for defining an accurate model of risk prediction; 2) to verify predictive accuracy of the model and 3) to identify group profiles according to the degree of PTB risk based on the most informative factors.


Label-free cell based impedance measurements of ZnO nanoparticles-human lung cell interaction: a comparison with MTT, NR, Trypan blue and cloning efficiency assays.

  • Giuseppina Bozzuto‎ et al.
  • Journal of nanobiotechnology‎
  • 2021‎

There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays.


Extra-visual functional and structural connection abnormalities in Leber's hereditary optic neuropathy.

  • Maria A Rocca‎ et al.
  • PloS one‎
  • 2011‎

We assessed abnormalities within the principal brain resting state networks (RSNs) in patients with Leber's hereditary optic neuropathy (LHON) to define whether functional abnormalities in this disease are limited to the visual system or, conversely, tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of diffusion tensor (DT) MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity between these sensory modalities in patients with severe visual deficits.


Functional correlates of preserved naming performance in amnestic Mild Cognitive Impairment.

  • Eleonora Catricalà‎ et al.
  • Neuropsychologia‎
  • 2015‎

Naming abilities are typically preserved in amnestic Mild Cognitive Impairment (aMCI), a condition associated with increased risk of progression to Alzheimer's disease (AD). We compared the functional correlates of covert picture naming and word reading between a group of aMCI subjects and matched controls. Unimpaired picture naming performance was associated with more extensive activations, in particular involving the parietal lobes, in the aMCI group. In addition, in the condition associated with higher processing demands (blocks of categorically homogeneous items, living items), increased activity was observed in the aMCI group, in particular in the left fusiform gyrus. Graph analysis provided further evidence of increased modularity and reduced integration for the homogenous sets in the aMCI group. The functional modifications associated with preserved performance may reflect, in the case of more demanding tasks, compensatory mechanisms for the subclinical involvement of semantic processing areas by AD pathology.


Sleep apnea: Altered brain connectivity underlying a working-memory challenge.

  • Nicola Canessa‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Obstructive sleep apnea (OSA) is characterized by the frequent presence of neuro-cognitive impairment. Recent studies associate cognitive dysfunction with altered resting-state brain connectivity between key nodes of the executive and default-mode networks, two anti-correlated functional networks whose strength of activation increases or decreases with cognitive activity, respectively. To date no study has investigated a relationship between cognitive impairment in OSA and brain connectivity during an active working-memory challenge. We thus investigated the effect of OSA on working-memory performance and underlying brain connectivity. OSA patients and matched healthy controls underwent functional magnetic resonance imaging (fMRI) scanning while performing a 2-back working-memory task. Standard fMRI analyses highlighted the brain regions activated at increasing levels of working-memory load, which were used as seeds in connectivity analyses. The latter were based on a multiregional Psycho-Physiological-Interaction (PPI) approach, to unveil group differences in effective connectivity underlying working-memory performance. Compared with controls, in OSA patients normal working-memory performance reflected in: a) reduced interhemispheric effective connectivity between the frontal "executive" nodes of the working-memory network, and b) increased right-hemispheric connectivity among regions mediating the "salience-based" switch from the default resting-state mode to the effortful cognitive activity associated with the executive network. The strength of such connections was correlated, at increasing task-demands, with executive (Stroop test) and memory (Digit Span test) performance in neuro-cognitive evaluations. The analysis of effective connectivity changes during a working-memory challenge provides a complementary window, compared with resting-state studies, on the mechanisms supporting preserved performance despite functional and structural brain modifications in OSA.


Functional network connectivity in the behavioral variant of frontotemporal dementia.

  • Massimo Filippi‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2013‎

The aim of this study was to investigate, using resting state (RS) functional magnetic resonance imaging (fMRI), the functional connectivity within and among brain networks in patients with the behavioral variant of frontotemporal dementia (bvFTD), compared with healthy controls and patients with probable Alzheimer's disease (pAD).


A functional MRI study of cortical activations associated with object manipulation in patients with MS.

  • Massimo Filippi‎ et al.
  • NeuroImage‎
  • 2004‎

Previous functional magnetic resonance imaging (fMRI) studies of simple motor tasks have shown that in patients with multiple sclerosis (MS), there is an increased recruitment of several regions part of a complex sensorimotor network. These studies have suggested that this might be the case because patients tend to activate, when performing a simple motor task, regions that are usually activated in healthy subjects during the performance of more complex tasks due to the presence of subcortical structural damage. In this study, we tested this hypothesis by comparing the patterns of cortical activations during the performance of two tasks with different levels of complexity from 16 MS patients and 16 age- and sex-matched controls. The first task (simple) consisted of flexion-extension of the last four fingers of the right hand, and the second task (complex) consisted of object manipulation. During the simple task, MS patients had, when compared to controls, more significant activations of the supplementary motor area (SMA), secondary sensorimotor area, posterior lobe of the cerebellum, superior parietal gyrus (SPG), and inferior frontal gyrus (IFG). These three latter regions are part of a fronto-parietal circuit, whose activation occurs typically in the contralateral hemisphere of healthy subjects during object manipulation, as shown also by the present study. During the performance of the complex task, MS patients showed an increased bilateral recruitment of several areas of the fronto-parietal circuit associated with object manipulation, as well of several other areas, which were mainly in the frontal lobes. This study confirms that some of the regions that are activated by MS patients during the performance of simple motor tasks are part of more complex pathways, recruited by healthy subjects when more complex and difficult tasks have to be performed.


The shape of motor resonance: right- or left-handed?

  • Monia Cabinio‎ et al.
  • NeuroImage‎
  • 2010‎

The human mirror neuron system is a fronto-parietal neural pathway which, when activated by action observation, gives rise to an internal simulation of the observed action (motor resonance). Here we demonstrate how handedness shapes the resonant response, by engaging right-handed (RH) and left-handed (LH) subjects in observation and execution of actions preferentially performed by the dominant hand. We hypothesize that since motor resonance reproduces subliminally the specific motor program for the observed action, it should be subject to motor constraints, such as handedness. A conjunction analysis for observed and executed actions revealed that handedness determines a lateralized activation of the areas engaged in motor resonance. Premotor-BA6 and parietal-BA40 are strongly left lateralized in RH subjects observing or moving their right hand, and to a lesser degree their left hand. Extremely LH subjects show a similar pattern of lateralization on the right, while more ambidextrous LH subjects show a more bilateral activation. The activation of a cortical network outside the mirror neuron system is also discussed.


Microstructural Correlates of Emotional Attribution Impairment in Non-Demented Patients with Amyotrophic Lateral Sclerosis.

  • Chiara Crespi‎ et al.
  • PloS one‎
  • 2016‎

Impairments in the ability to recognize and attribute emotional states to others have been described in amyotrophic lateral sclerosis patients and linked to the dysfunction of key nodes of the emotional empathy network. Microstructural correlates of such disorders are still unexplored. We investigated the white-matter substrates of emotional attribution deficits in a sample of amyotrophic lateral sclerosis patients without cognitive decline. Thirteen individuals with either probable or definite amyotrophic lateral sclerosis and 14 healthy controls were enrolled in a Diffusion Tensor Imaging study and administered the Story-based Empathy Task, assessing the ability to attribute mental states to others (i.e., Intention and Emotion attribution conditions). As already reported, a significant global reduction of empathic skills, mainly driven by a failure in Emotion Attribution condition, was found in amyotrophic lateral sclerosis patients compared to healthy subjects. The severity of this deficit was significantly correlated with fractional anisotropy along the forceps minor, genu of corpus callosum, right uncinate and inferior fronto-occipital fasciculi. The involvement of frontal commissural fiber tracts and right ventral associative fronto-limbic pathways is the microstructural hallmark of the impairment of high-order processing of socio-emotional stimuli in amyotrophic lateral sclerosis. These results support the notion of the neurofunctional and neuroanatomical continuum between amyotrophic lateral sclerosis and frontotemporal dementia.


Morphometric study of the ventricular indexes in healthy ovine BRAIN using MRI.

  • Marco Trovatelli‎ et al.
  • BMC veterinary research‎
  • 2022‎

Sheep (Ovis aries) have been largely used as animal models in a multitude of specialties in biomedical research. The similarity to human brain anatomy in terms of brain size, skull features, and gyrification index, gives to ovine as a large animal model a better translational value than small animal models in neuroscience. Despite this evidence and the availability of advanced imaging techniques, morphometric brain studies are lacking. We herein present the morphometric ovine brain indexes and anatomical measures developed by two observers in a double-blinded study and validated via an intra- and inter-observer analysis.


Diffusion tensor imaging evidence of corticospinal pathway involvement in frontotemporal lobar degeneration.

  • Chiara Crespi‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2020‎

Motor neuron dysfunctions (MNDys) in Frontotemporal Lobar Degeneration (FTLD) have been consistently reported. Clinical and neurophysiological findings proved a variable range of pathological changes, also affecting the corticospinal tract (CST). This study aims to assess white-matter microstructural alterations in a sample of patients with FTLD, and to evaluate the relationship with MNDys. Fifty-four FTLD patients (21 bvFTD, 16 PPA, 17 CBS) and 36 healthy controls participated in a Diffusion Tensor Imaging (DTI) study. We analyzed distinctive and common microstructural alteration patterns across FTLD subtypes, including those affecting the CST, and performed an association analysis between CST integrity and the presence of clinical and/or neurophysiological signs of MNDys. The majority of FTLD patients showed microstructural changes in the motor pathway with a high prevalence of CST alterations also in patients not displaying clinical and/or neurophysiological signs of MNDys. Our results suggest that subtle CST alterations characterize FTLD patients regardless to the subtype. This may be due to the spread of the pathological process to the motor system, even without a clear clinical manifestation of MNDys.


Enhanced SPARCL1 expression in cancer stem cells improves preclinical modeling of glioblastoma by promoting both tumor infiltration and angiogenesis.

  • Filippo Gagliardi‎ et al.
  • Neurobiology of disease‎
  • 2020‎

Glioblastoma (GBM) is the most malignant brain tumor of adults and is characterized by extensive cell dissemination within the brain parenchyma and enhanced angiogenesis. Effective preclinical modeling of these key features suffers from several shortcomings. Aim of this study was to determine whether modulating the expression of extracellular matrix (ECM) modifiers in proneural (PN) and mesenchymal (MES) cancer stem cells (CSCs) and in conventional glioma cell lines (GCLs) might improve tumor invasion and vascularization. To this end, we selected secreted, acidic and rich in cysteine-like 1 (SPARCL1) as a potential mediator of ECM remodeling in GBM. SPARCL1 transcript and protein expression was assessed in PN and MES CSCs as well as GCLs, in their xenografts and in patient-derived specimens by qPCR, WB and IHC. SPARCL1 expression was then enforced in both CSCs and GCLs by lentiviral-based transduction. The effect of SPARCL1 gain-of-function on microvascular proliferation, microglia activation and advanced imaging features was tested in intracranial xenografts by IHC and MRI and validated by chorioallantoic membrane (CAM) assays. SPARCL1 expression significantly enhanced the infiltrative and neoangiogenic features of PN and MES CSC/GCL-induced tumors, with the concomitant activation of inflammatory responses associated with the tumor microenvironment, thus resulting in experimental GBMs that reproduced both the parenchymal infiltration and the increased microvascular density, typical of GBM. Overall, these results indicate that SPARCL1 overexpression might be instrumental for the generation of CSC-derived preclinical models of GBM in which the main pathognomonic hallmarks of GBMs are retrievable, making them suitable for effective preclinical testing of therapeutics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: