Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle.

  • Kristian Kiilerich‎ et al.
  • Diabetes‎
  • 2010‎

To test the hypothesis that free fatty acid (FFA) and muscle glycogen modify exercise-induced regulation of PDH (pyruvate dehydrogenase) in human skeletal muscle through regulation of PDK4 expression.


ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations.

  • Anne-Sofie Graae‎ et al.
  • Diabetes‎
  • 2019‎

The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.


A Single Bout of One-Legged Exercise to Local Exhaustion Decreases Insulin Action in Nonexercised Muscle Leading to Decreased Whole-Body Insulin Action.

  • Dorte E Steenberg‎ et al.
  • Diabetes‎
  • 2020‎

A single bout of exercise enhances insulin action in the exercised muscle. However, not all human studies find that this translates into increased whole-body insulin action, suggesting that insulin action in rested muscle or other organs may be decreased by exercise. To investigate this, eight healthy men underwent a euglycemic-hyperinsulinemic clamp on 2 separate days: one day with prior one-legged knee-extensor exercise to local exhaustion (∼2.5 h) and another day without exercise. Whole-body glucose disposal was ∼18% lower on the exercise day as compared with the resting day due to decreased (∼37%) insulin-stimulated glucose uptake in the nonexercised muscle. Insulin signaling at the level of Akt2 was impaired in the nonexercised muscle on the exercise day, suggesting that decreased insulin action in nonexercised muscle may reduce GLUT4 translocation in response to insulin. Thus, the effect of a single bout of exercise on whole-body insulin action depends on the balance between local effects increasing and systemic effects decreasing insulin action. Physiologically, this mechanism may serve to direct glucose into the muscles in need of glycogen replenishment. For insulin-treated patients, this complex relationship may explain the difficulties in predicting the adequate insulin dose for maintaining glucose homeostasis following physical activity.


Illumination of the Endogenous Insulin-Regulated TBC1D4 Interactome in Human Skeletal Muscle.

  • Jeppe K Larsen‎ et al.
  • Diabetes‎
  • 2022‎

Insulin-stimulated muscle glucose uptake is a key process in glycemic control. This process depends on the redistribution of glucose transporters to the surface membrane, a process that involves regulatory proteins such as TBC1D1 and TBC1D4. Accordingly, a TBC1D4 loss-of-function mutation in human skeletal muscle is associated with an increased risk of type 2 diabetes, and observations from carriers of a TBC1D1 variant associate this protein to a severe obesity phenotype. Here, we identified interactors of the endogenous TBC1D4 protein in human skeletal muscle by an unbiased proteomics approach. We detected 76 proteins as candidate TBC1D4 interactors. The binding of 12 of these interactors was regulated by insulin, including proteins known to be involved in glucose metabolism (e.g., 14-3-3 proteins and α-actinin-4 [ACTN4]). TBC1D1 also coprecipitated with TBC1D4 and vice versa in both human and mouse skeletal muscle. This interaction was not regulated by insulin or exercise in young, healthy, lean individuals. Similarly, the exercise- and insulin-regulated phosphorylation of the TBC1D1-TBC1D4 complex was intact. In contrast, we observed an altered interaction as well as compromised insulin-stimulated phosphoregulation of the TBC1D1-TBC1D4 complex in muscle of obese individuals with type 2 diabetes. Altogether, we provide a repository of TBC1D4 interactors in human and mouse skeletal muscle that serve as potential regulators of TBC1D4 function and, thus, insulin-stimulated glucose uptake in human skeletal muscle.


AMPKγ3 Controls Muscle Glucose Uptake in Recovery From Exercise to Recapture Energy Stores.

  • Kohei Kido‎ et al.
  • Diabetes‎
  • 2023‎

Exercise increases muscle glucose uptake independently of insulin signaling and represents a cornerstone for the prevention of metabolic disorders. Pharmacological activation of the exercise-responsive AMPK in skeletal muscle has been proven successful as a therapeutic approach to treat metabolic disorders by improving glucose homeostasis through the regulation of muscle glucose uptake. However, conflicting observations cloud the proposed role of AMPK as a necessary regulator of muscle glucose uptake during exercise. We show that glucose uptake increases in human skeletal muscle in the absence of AMPK activation during exercise and that exercise-stimulated AMPKγ3 activity strongly correlates to muscle glucose uptake in the postexercise period. In AMPKγ3-deficient mice, muscle glucose uptake is normally regulated during exercise and contractions but impaired in the recovery period from these stimuli. Impaired glucose uptake in recovery from exercise and contractions is associated with a lower glucose extraction, which can be explained by a diminished permeability to glucose and abundance of GLUT4 at the muscle plasma membrane. As a result, AMPKγ3 deficiency impairs muscle glycogen resynthesis following exercise. These results identify a physiological function of the AMPKγ3 complex in human and rodent skeletal muscle that regulates glucose uptake in recovery from exercise to recapture muscle energy stores.


Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4.

  • Christian Pehmøller‎ et al.
  • Diabetes‎
  • 2012‎

Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: